Manuscripts

Recent Papers

Classifications & Misclassifications of EEG Signals using Linear and Ada Boost Support Vector Machines

Epilepsy is one of the frequent brain disorder due to transient and unexpected electrical interruptions of brain. Electroencephalography (EEG) is one of the most clinically and scientifically exploited signals recorded from humans and very complex signal. EEG signals are non-stationary as it changes over time. So, discrete wavelet transform (DWT) technique is used for feature extraction. Classifications and misclassifications of EEG signals of linearly separable support vector machines are shown using training and testing datasets. Then AdaBoost support vector machine is used to get strong classifier.

Published by: Neelam Rout

Author: Neelam Rout

Paper ID: M1P2-1150

Paper Status: published

Published: November 20, 2014

Full Details
Research Paper

Dynamic Load Calculation in a Distributed System using Centralized Approach

The building of networks and the establishment of communication protocols have led to distributed systems, in which computers that are linked in a network cooperate on a task. The task is divided by the master node into small parts (sub problems) and is given to the nodes of the distributed system to solve, which gives better performance in time complexity to solve the problem compared to the time required to solve the problem in a single machine. Load balancing is the process of redistributing the work load among nodes of the distributed system to improve both resource utilization and job response time while also avoiding a situation where some nodes are heavily loaded while others are idle or doing little work. So before sending these parts of problem by the master to the nodes, master node should know the actual work load of all the nodes. We try a dynamic approach to find out the work load of each participating nodes in the distributed system by the master before sending the parts of the problem to the nodes. This paper describes an algorithm which runs in the master machine and collects information from the nodes of the distributed system(client server application) and calculates the current work load of the nodes of the distributed system. The algorithm is developed in such a way that it can calculate the loads of the nodes dynamically. This means the loads can be evaluated if new nodes are added or deleted or during current performance of the nodes. The whole system is implemented on linux machine and local area network.

Published by: Biswajit Sarma, Srishti Dasgupta

Author: Biswajit Sarma

Paper ID: M1P2-1146

Paper Status: under-process

Submitted: November 20, 2014

Full Details Track Status

A survey Report for Data Mining based on Web research

Web Data Mining is an important area of Data Mining which deals with the extraction of interesting knowledge from the World Wide Web. It defines the application of data mining techniques to extract knowledge from web data, including web documents, hyperlinks between documents, usage logs of web sites, etc. Therefore, the process of extracting useful information from the contents of web documents and the Content data is the collection of facts a web page is designed to contain, it may consist of text, images, audio, video, or structured records such as lists and tables. The data used for web content mining includes both text and graphical data. Content mining is divided into two parts, one is webpage content mining and other is search result mining. Here, it defines the information retrieval and information extraction from web and making research for data mining.

Published by: Gaurav Saini

Author: Gaurav Saini

Paper ID: M1P2-1140

Paper Status: published

Published: November 20, 2014

Full Details

A Survey on Web Research for Data Mining

Web mining is the application of data mining techniques to extract knowledge from web data, including web documents, hyperlinks between documents, usage logs of web sites, etc. The process of extracting useful information from the contents of web document is data mining. Content data is the collection of facts a web page is designed to contain. It may consist of text, images, audio, video, or structured records such as lists and tables. The large and dynamic information source that is structurally complex and ever growing, the World Wide Web is fertile ground for data mining principles, or Web mining. Here, it defines the information retrieval and information extraction from web and making research for data mining.

Published by: Gaurav Saini

Author: Gaurav Saini

Paper ID: M1P1-1145

Paper Status: published

Published: November 16, 2014

Full Details

SIFT: Scale Invariant Feature Transform (Review)

This paper presents a study on SIFT (Scale Invariant Feature transform) which is a method for extracting distinctive invariant features from images that can be used to perform reliable matching between different views of an object or scene. The features are invariant to image scaling, translation, and rotation, and partially invariant to illumination changes and affine or 3D projection. There are various applications of SIFT that includes object recognition, robotic mapping and navigation, image stitching, 3D modeling, gesture recognition, video tracking, individual identification of wildlife and match moving.

Published by: Ridhi Jindal, Sonia Watta

Author: Ridhi Jindal

Paper ID: M1P1-1146

Paper Status: published

Published: November 13, 2014

Full Details

Significance of OSPF Routing Protocol in Mobile Ad Hoc NETworks (MANET)

Mobile Ad Hoc Network (MANET) is collection of multi-hop wireless mobile nodes that can communicate with each other without centralized control or established infrastructure. The network in which wireless links are highly error prone and can go down frequently due to mobility of nodes, interference and less infrastructure. Routing in MANET is a quite difficult due to highly dynamic environment. Several routing protocols have been proposed for mobile ad hoc networks. This paper proposed OSPF routing protocol in Mobile Ad Hoc Network. Here, the router first find out the shortest path from source to destination and forwarded the packet in that path.

Published by: Anuj Verma, Disha Guleria

Author: Anuj Verma

Paper ID: M1P1-1144

Paper Status: published

Published: November 13, 2014

Full Details
Request a Call
If someone in your research area is available then we will connect you both or our counsellor will get in touch with you.

    [honeypot honeypot-378]

    X
    Journal's Support Form
    For any query, please fill up the short form below. Try to explain your query in detail so that our counsellor can guide you. All fields are mandatory.

      X
       Enquiry Form
      Contact Board Member

        Member Name

        [honeypot honeypot-527]

        X
        Contact Editorial Board

          X

            [honeypot honeypot-310]

            X