
International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 25

ISSN: 2454-132X

Impact Factor: 6.078
(Volume 7, Issue 5 - V7I5-1164)

Available online at: https://www.ijariit.com

Rake- A cross-platform digital product
Ganavi J.

ganavijayaram2050@gmail.com

Altiostar, Bangalore, Karnataka

Amith S. Bharadwaj

amithsb21@gmail.com

Sakha Global, Bangalore, Karnataka

ABSTRACT

Rake is a cross-platform release-ready digital product that is

a production-level app, making use of all the latest Firebase

technologies. This app uses Firebase MLKit, Firebase

Firestore & Firebase Authentication for its core

functionality. It also uses libraries like Retrofit, Glide, GSON,

and more third-party libraries for other functionalities.

Firebase MLKit is used to recognize handwritings and text in

images, objects in images and also scan barcodes. This

contributes to the main purpose of our app, which labels

images and provides the user with context-aware actions of

what the user can do next. Firebase Authentication is used to

authenticate and help users login & signup in the app. This

uses OAuth 2.0 under the hood, so it is a very secure

mechanism for login. Firebase Firestore is used as a

database to store the user’s scanned data so that he can refer

to it for later use. We’re also using our own custom

TensorFlow Lite model, named ‘mobilenet’, to detect images.

The app can be accessed via the web portal as well. Firebase

Authentication lets the user login on the web portal, which

can be found at rake.now.sh and give the user access to his

data on Firebase Firestore. This extended functionality

where the user can access his data enhances the ease-of-use

and makes sure that the user doesn’t always need a mobile

device to see his previously-scanned data.

Keywords: Image Classification, Text Recognition, Barcode

Scanning, Reverse Image Search, REST API, Android, Web

Mining, Cross-Platform, Firebase.

1. INTRODUCTION
In today’s fast-paced world, it’s not only important to have a

product that runs on a web browser but also one that extends to

devices that we carry around in our pockets: our phones.

Because the abilities of a web browser and an application

running on it are limited, the need to build a native mobile app

for the very same is more than imminent. Probably the most

obvious feature that the web platform is missing, which the

mobile platform has is something we depend on in our day-to-

day usage of phones: Notifications.

We’re building a product that is start-up-ready, cross-platform,

and one that brings the full immersive experience of the web

along with enhanced features from the mobile platform. We are

going to implement this by following Design Thinking

principles and we aim to make sure that the entire product is

based on User-Centered Design.

2. PROBLEM STATEMENT
2.1 Existing System

Most of the current systems are web based and applications

such as google lens aren’t compatible on devices with lower

OS versions. Our product overcomes these compatibility and

non-native issues by making it accessible on most of the online

platforms. Existing systems use raw data to train models to

analyze the image which requires a lot of human effort and

time.

2.2 Limitations of existing system

Existing systems have the following limitations.

• Browser abilities are limited.

• Web applications do not utilize much of the native features

of the device such as push notifications.

• Most of the current systems are not compatible with mobile

devices with lower OS versions such as Android 5.0

2.3 Proposed System

The proposed system architecture (Fig 2.a) will utilize the

features of Android devices, Web Platforms and Firebase

products for its core functionalities.

Fig-2.a: Proposed System Architecture.

http://www.ijariit.com/
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V7I5-1164
mailto:ganavijayaram2050@gmail.com
mailto:amithsb21@gmail.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 26

2.4 Advantages of the Proposed System

The proposed system has the following advantages over the

existing systems.

• Reduces the human effort required to manually annotate tags

and labels in an image.

• Reduces the human errors that occur when manually

annotating tags and labels in an image.

• The reverse image search API uses web mining technologies

to crawl the web pages quickly to provide the desired

results.

• The users can view and control their data using an easy-to-

use dashboard interface designed using a RESTful API.

3. SYSTEM DESIGN
The data flows through our application as shown in Fig 3.a Fig

3.b and Fig 3.c. Users are authenticated via Google Auth

Provider. Once authenticated, core functionalities such as text

recognition, barcode scanning, image labelling can be

performed, and the results are stored with the help of a non-

relational DBMS such as Firebase Firestore database. The

stored data can be further utilized to recommend similar

products or images and provide information about the same.

Fig-3.a: Data Flow Diagram for Authentication

Fig-3.b: Data Flow Diagram for Text Recognition, Image

Labelling and Barcode Scanning

Fig-3.c: Data Flow Diagram for Reverse Image Search

4. REQUIREMENTS
4.1 Hardware Requirements

• Desktop/PC - Minimum 4GB RAM

• Android Device – OS v5.0 and above, Minimum 2GB

RAM.

4.2 Software Requirements

• Android SDK

• Android Studio

• Web Browsers – Safari, Chrome, IE

• Package Installers – NPM, Yarn

• Node.js Runtime environment.

• Libraries – React.js, Webpack, Babel, css-modules,

Flask, Beautiful Soup.

5. IMPLEMENTATION
The image from the mobile camera is converted into a Bitmap

or a Byte Buffer before it is sent to Firebase Vision Image for

preprocessing. The preprocessed image is then sent to the

MLKit model for text recognition / image labeling as shown in

Fig 5.a

Fig-5.a: Pre-processing of the input image.

MLKit provides both on-device and cloud-based models for

Text Recognition. The on-device model uses the text

recognizer feature of the user device to recognize text which

can be helpful for offline use. The cloud-based model can be

instantiated as follows.

5.1 Pseudocode for Text Recognition

val textRecognizer =

FirebaseVision.getInstance().cloudTextRecognizer

The preprocessed image is then passed to the model for Text

Recognition.

5.2 Pseudocode for Processing of the Image

textRecognizer.processImage(image).

 addOnSuccessListener {

 // Task completed successfully

 }

 .addOnFailureListener {

 // Task failed with an exception

 }

If the text recognition was successful, a FirebaseVisionText

object is returned in the success listener. The MLKit’s Text

Recognizer segments the text into blocks, lines and elements

from which the information can be extracted. The image

contains zero or more Text Block objects. Text Block objects

consists of zero or more Line objects and the Line object

contains zero or more Element objects.

Fig-5.b: Text Segmentation.

For Image Recognition, a custom TensorFlow-lite model

named MobileNet is used, which implements a convolutional

neural network [3] with several datasets such as Open Images

Dataset which includes approximately 9 million annotated

images [1]. MLKit provides both on-device and cloud-based

models for image labeling. The on-device recognizer does not

require an internet connection. The cloud-based recognizer,

however, requires an internet connection and is more accurate.

The preprocessed image is passed through this model. The

cloud-based image labeling API can be instantiated as follows.

5.3 Pseudocode for Label Detection

val detector =

FirebaseVision.getInstance().visionCloudLabelDetector

http://www.ijariit.com/

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 27

The preprocessed image can now be passed for image labeling

as follows.

5.4 Pseudocode for Image Labelling

detector.detectInImage(image).

 addOnSuccessListener {

 // Task completed successfully

 }

 .addOnFailureListener {

 // Task failed with an exception

 }

If the image labeling was successful, the success listener will

receive a list of FirebaseVisionLabel Objects.

Each FirebaseVisionLabel object represents the entity that was

labeled and contains all the information related to it.

The reverse image search API parses web pages for selected

attributes using beautiful soup, a python library used to parse

html and web documents. The input can either be one of the

labels from image recognition or an image from the device’s

camera. The results can be stored in the cloud via Firebase

Firestore, for further reference using the web application.

6. RESULT/ TESTING ANALYSIS
6.1 Unit Testing

The unit testing results for the Reverse Image Search and the

Web Application are shown below.

Table-6.a: Unit testing results for the web application

Table-6.b: Unit testing results for the reverse image search

API.

6.2 Performance Metrics

The Android application Rake’s performance metrics in

comparison with other applications of similar domain can be

found in Table 6.c.

Table-6.c: Performance Metrics of the Android

Application.

Similarly, the web application’s performance can be measured

against similar products for factors such as Accessibility,

performance, speed index, and Time to interactive as shown in

Table 6.d

Table-6.d: Performance Metrics of the Web Application.

7. CONCLUSION

Since the product is cross platform, there’s no doubt that it is

far superior to applications that are only available on web or

applications that only available on mobile devices. Cross-

platform applications are what makes a product versatile, and

convenient for users to use. User retention is higher in such

products. Language Recognition is one of the features that can

be implemented in the future. The user interface also requires

few enhancements. An iOS application is also under

consideration. Flutter or React Native can be used to write an

application which is compatible with both Android and iOS

devices.

8. REFERENCES

[1] Yashaswi Verma, “Image Annotation using Metric

Learning” in Semantic Neighborhoods Proceedings of 12th

European Conference on Computer Vision, 7-13 Oct. 2012,

Print ISBN 978-3-642-33711--6, Vol. ECCV 2012, Part-III,

LNCS 7574, pp. 114-128, Firenze, Italy.

[2] Bruce A. Draper and J Ross Beveridge, “Efficient Label

Collection for Unlabeled Image Datasets”, in Colorado

State University Fort, 2017.

[3] Tianmei Guo, Jiwen Dong, Henjian Li, Yunxing Gao,

“Simple Convolutional Neural Network on Image

Classification”, in Department of Computer Science and

Technology, Shandong Provincial Key Laboratory of

Network based Intelligent Computing University of Jinan,

Jinan . 2017.

http://www.ijariit.com/

