
International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 10

ISSN: 2454-132X

Impact Factor: 6.078
(Volume 7, Issue 5 - V7I5-1140)

Available online at: https://www.ijariit.com

Encryption and real-time decryption for protecting machine

learning models in Android applications
Aryan Verma

aryanverma19oct@gmail.com

National Institute of Technology, Hamirpur, Himachal Pradesh

ABSTRACT

With the Increasing use of Machine Learning in Android

applications, more research and efforts are being put into

developing better-performing machine learning algo-

rithms with a vast amount of data. Along with machine

learning for mobile phones, the threat of extraction of

trained machine learning models from application pack-

ages (APK) through reverse engineering exists. Currently,

there are ways to protect models in mobile applications

such as name obfuscation, cloud deployment, last layer

isolation. Still, they offer less security, and their imple-

mentation requires more effort. This paper gives an algo-

rithm to protect trained machine learning models inside

android applications with high security and low efforts to

implement it. The algorithm ensures security by encrypt-

ing the model and real-time decrypting it with 256-bit Ad-

vanced Encryption Standard (AES) inside the running

application. It works efficiently with big model files with-

out interrupting the User interface (UI) Thread. As com-

pared to other methods, it is fast, more secure, and in-

volves fewer efforts. This algorithm provides the develop-

ers and researchers a way to secure their actions and

making the results available to all without any concern.

Keywords :- Android, Mobile Applications, Security,

Data Encryption, Model Deployment

1. Introduction
With the invention of machine learning (ML) techniques for

edge computing, mobile phone applications have seen a

significant bounce in their usage. Most mobile applications

are entirely dependent on the ML models either deployed

locally or hosted on the cloud. There are numerous ways in

which the trained models are reduced in size and made

ready to be used with mobile phones.

Organizations and research scientists are putting a lot of

effort into developing better algorithms for machine learn-

ing and training the models with a vast amount of data.

Still, after doing fundamental research and training the

model, when the option comes for deploying it to the appli-

cation, its security also comes into consideration. This work

addresses the most vulnerable security threat: extraction of

the trained model from the android application. When ma-

chine learning models are bundled with the installation file,

Android Application Package (APK), or downloaded from

the cloud after installing android applications, these model

files can be extracted directly after reverse-engineering the

APK and used for other third party tasks. This renders the

trained model prone to being accessed by someone outside

the organization and used without permission.

This work gives an efficient and fast algorithm for securing

the trained model files against unauthorized use or decom-

pilation from the APK. The algorithm works in two phases,

an encryption phase, and a decryption phase. In the encryp-

tion phase, the algorithm encrypts the trained model file

with 256-bit AES encryption to a data file that can be bun-

dled with the APK [1][2][3]. Even if the data file is extract-

ed by someone, it will be of no use as it would be encrypted

and can’t be decompiled or put for generating inference.

The second phase is the decryption phase. Wherever there is

a need to generate the inference, real-time decryption pro-

posed in work is used, which decrypts the model without

storing it in device memory very swiftly. The decryption

phase does not interrupt the User interface and works very

smoothly in the background. Even big machine learning

model files were proven to be decrypted in very little time,

which can be neglected while using the application. This

prevents the trained model from being used even after the

model file in encrypted form is accessed by someone. The

proposed algorithm will help the organizations rely less on

http://www.ijariit.com/
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V7I5-1140
mailto:aryanverma19oct@gmail.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 11

servers and the cloud for storing their models and investing

time to develop APIs (Application Programming Index) in

order to access model outputs. The time required to send

and receive data also vanishes by deploying the model on

the local device, hence the android phone itself.

2. Methods to Secure ML Models in Applications

2.1 Name Obfuscation

This is the standard practice for most of the classes and

resources of the application. Most of the developers use

tools to obfuscate the code files in the application [4]. This

process converts the file, variable names into another name,

making the code difficult to understand. Name Obfuscation

of model is to store it with a different filename. This prac-

tice ensures very light safety and can easily be breached for

the model files in the APK. Hence, someone else can still

use the model for any unauthorized task.

2.2 Deploying to Cloud

In this method, the model is not stored on the APK, but de-

ployed to the web server. This is a well known practice of

securing the machine learning models in mobile applica-

tions. Whenever there is a need to generate the inferences

from it, an Application programming Interface (API) Call is

made from the device to the web server which generates the

inference and returns the response of the model to the de-

vice. This intakes heavy resources for deploying the model

online and handling multiple number of calls. Also this

methods renders delay in results as the data transmission

timings and concurrency limits of the server creates a time

lag. Time, money and expertise of deployment is involved

in this method. Many companies and projects use this type

of process to secure their models.

2.3 Last layer Isolation

This method is used and implemented by very few as it

needs a lot of extra effort to be implemented, and it creates

a time lag while the model gets ready to be used. The last

layer isolation method works by removing the last layer

weights from the machine learning model that is to be bun-

dled with APK. In this method, even if the model file is

extracted through decompiling the application, it will be of

no use as the last layer weights would be absent from the

model. Whenever the inference is needed, the last layer

weights are fetched either from the server or the application

itself. These final layer weights get attached to the model

and prepare the entire model file. For getting the inference,

we use this model file.

This method takes much extra computation time, and the

complexity involved is too high. The generating of infer-

ence may take more time due to attaching the last layer or

its fetching from the server. Also, if the device stores the

entire model, it can be extracted from rooted Android de-

vices. This renders the method more complex and medium-

level security to the model file.

2.3 Downloading Models on Demand

The trained machine learning model can be downloaded

from the back-end during the run time and stored in the

app-specific directories. This method doesn’t involve stor-

ing models in APKs while distributing them for installation,

but it downloads the model from the server when the appli-

cation is put to use by the user. This process fails when the

devices are rooted. The model can still be accessed from the

folders and can be extracted. Hence, it offers inadequate

security to the model file.

2.4 Encrytion/Decryption of Model

This method of securing the model file converts the file to

an encrypted form which is then decrypted on the client

device and ensures maximum safety for the model file in

contrast to the other methods [5]. It is applied with less

complexity as compared to other methods.

3. Overview of Approach

My approach is divided into two parts, first, where the en-

cryption of the model takes place and second which de-

crypts the model in real-time.

3.1 Encryption of Model

This is the first phase of the algorithm. In this, the model is

converted to an encrypted data file, which the android ap-

plication stores and uses in the second phase. The machine

learning model file is brought to the android OS or any oth-

er system with Java Virtual Machine (JVM). Then the mod-

el file is read into the system using Java with the help of

Input File Streams. The read file is then converted into Byte

Buffers which is due to its fast processing speed and effi-

cient memory usage.

 A string variable key is used to initialize the SecretKey,

which is a type safe parameter for all further operations to

be held in encrypting the model. This SecretKey is used to

initialize the encryption algorithm. Here in this work, the

AES algorithm is used with a 256-bit key. The Cipher class

is used to initialize the AES algorithm.

This initialized class is now put to use by passing the previ-

ously read byte array into the instance. This instance works

heavily on the byte array form of the model file and en-

crypts it. The encryption function outputs a byte array

which is then stored in the form of a generic data file with a

.dat extension. We can use this file to bundle with the APK;

even if someone extracts it, it will be of no use until one has

the key for its decryption.

Figure-1 :- Overview of Encryption phase of the algorithm.

The model file is converted to an encrypted data file using

http://www.ijariit.com/

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 12

the cipher instance and the key which is stored in the APK.

3.2 Decryption and Use

This is the second phase of the algorithm, where the en-

crypted data file is decrypted and put to use. The encrypted

file bundled with the APK is now used for generating the

inference in the Application. For this, the file is read within

the Application from the assets and converted again to a

byte array for further processing. A call is made to fetch the

key from the server via the API, which returns a JSON ob-

ject, and this returned object is parsed to get the key field

out of it.

The key field is of the String type and is used to initialize a

SecretKeySpec class instance which further is used to ini-

tialize the Cipher class in decrypt mode. The encrypted

model byte array is then passed to this function which in

return gives a byte array. This returned byte array is the

original form of the trained model and can be used to gen-

erate inferences through the interpreters. This has not to be

stored on the device because of the insecurity of decompil-

ing and extraction of file.

Figure-2 :- Overview of the decryption phase of algorithm.
The encrypted model in form of data file is again converted
to a byte array which is a decrypted version of the machine
learning model. This byte can be put to use by passing it to
the interpreter and generating the inference.

4. Methods

4.1 Creating and Storing Key

The key is required for both the encryption and decryption

of the model in the Android application. The key is a string

data type variable and must be 16 characters long, as the

encryption is being performed with 256 bits. The String

data type uses 2 bytes for each character, which sums up to

32 bytes for a 16 character long key, which further equals

256 bits. Storing the key inside the APK in the form of

BuildConfig Field or in the Native C++ class does not

ensure proper protection and the APK can be decompiled

for the key. In this work the key is stored on a server which

can be returned via an API call with JWT Protection. This

ensures that the key is not stored in the APK and is fetched

and used dynamically.

Figure-3 :- A 16 character key is stored on the server which
is fetched by making a secure call to the server using Java
Web Token (JWT) through HTTP Client. The data in form
of Java Script Object Notation (JSON) is parsed to a string
variable which is then converted to a byte array. This byte
array is used in the constructor of SecretKeySpec Class to
create its instance.

4.2 Generating SecretKeySpec from key

Now, the key, which is in string form, is to be converted
into a SecretKey Variable which is to be used for
initializing the Cipher. First, the string key variable is
converted into a byte array containing the data from the
variable. This byte array is then converted to a SecretKey.
The SecretKey is an interface from the Java cryptography
library providing type safety for parameters that are used
for encrypting and decrypting the data. For conversion,
SecretKeySpec class is used, which is a helper class, and
constructs the SecretKey from the provided byte array
without going through a provider-dependent fashion into
the android phones. This instance of the SecretKeySpec
Class is used to generate the instance of the Cipher class,
which is used to encrypt/decrypt the data.

4.3 Creating and Initializing the Cipher

Java Cipher is a class from Java Cryptography API, which

represents an encryption algorithm, and its instance is used

to encrypt/decrypt the data in the application [6][7]. In this

work, the cipher instance is used twice, one while creating

the encrypted file and the other which is while decrypting

the data file back to the model. A parameter tells the cipher

class for which type of algorithm is to be used. Here in this

work, AES has been used to create the Cipher instance with

a 256-bit key. The AES encrypts the model to an extent that

it is impossible for the model file to get decrypted back.

Even if this AES encrypted file is extracted from the APK,

it will be of no use. The machine learning interpreters and

the decompilers, both will not be able to read and identify

the data.

http://www.ijariit.com/

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 13

Figure-4 :- Java implementation of the Cipher initialization

and secret key generation from the string variable.

4.4 Encrypting and Storing Machine Learning Model

The generated instance of the Cipher class is now put to

work for encrypting the model file. The model file is read

from memory, and data from this file is converted to a byte

array. This conversion to a byte array is because the cipher

instance accepts the data in the form of a byte array. Now

the data as a byte array is passed to the cipher instance for

encryption. The output from the instance is received as a

byte array, which is an encrypted form of the data we

passed to the cipher. This encrypted data has come from the

output to be written inside a generic data file. This writing

operation is made successful via FileOutputStream.

FileOutputStream is a helper class from Java providing a

function to write data to a file and save it to a path given to

the function.

This FileOutputStream instance writes the data that has

been encrypted in the form of a byte array to a generic data

file with a .dat extension. This data file is the final

encrypted form of the model, which is to be bundled with

the APK. After this step, the decryption phase starts, which

has to be performed on the device where the APK resides.

Even if this data file is accessed through reverse

engineering, it will be of no use until one has the key with

them.

Figure-4 Java implementation of Encryption and storage of

ML model. The model file is read into a byte buffer named

largeFileBytes. This buffer is passed to the cipher instance

which encrypts it.

4.5 Multi-Threading for preventing UI Frame Skipping
and Looper Blocking

The decryption of a model for real-time use is a task that

consumes up the processor power and may result in the UI

thread's stoppage. A multithreading environment is created

to prevent the UI from blocking, and decrypting the model

in real-time. A new worker thread is started, which is re-

sponsible for the whole process of loading and decrypting

the model from memory as seen in Figure 5. This prevents

skipping the frames and blocking the UI thread.

Figure 5 :- The heavy process occurring on the worker

thread of android application doesn’t interrupt the Main UI

thread and it works efficiently.

4.6 Decrypting Model and use

The encrypted data file to be decrypted and used for
generating inference is read from the path where this file is
located into a byte array. Byte arrays are used for faster and
effective data transmission between the processes; other
data types prove to be slower and result in data loss from
the model file. Again a cipher is initialized with the same
key that we used to encrypt the model file but with the
decryption mode. The byte buffer from the encrypted file is
passed to the cipher instance. The result is the decrypted
data in the form of the byte array. This byte array is the data
present in the model file and can be put to a byte buffer and
used for initializing the interpreter.

Figure-5 Java implementation of Decryption of ML model.

The process takes place on a worker thread, which after

decrypting the model creates byte array. This array is

passed to tensorflow interpreters.

5. Results
The algorithm proposed in this work efficiently encrypts

well-known architectures in minimal time [8][9][10][11].

The algorithm is tested on various architecture model files

with varying trained file sizes on two devices of different

CPU processing powers. The files were stored in the form

of TensorFlow models converted to flat buffer files using

TensorFlow lite library with .tflite extension. On a mobile

device having a Central Processing Unit (CPU) of 8 cores

and a clock speed of 2000 MegaHertz (MHz), the U-

http://www.ijariit.com/

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 14

Squared Net model file with a size of 2560 Kb (Kilobytes)

took 227 ms (milliseconds) to get converted to an encrypted

byte buffer and 17 ms to get stored in the form of encrypted

data (.dat) file. Inception V2, with a size of 11571 Kb, took

720 ms for encrypted byte buffer and 66 ms further to get

stored to an encrypted data file. Even big model files such

as Inception V3 and EfficientNetB5 took a total of 2079 ms

and 1152 ms, respectively, for converting to an encrypted

file, giving very fast encryption rates.

Table-1: Performance of the encryption algorithm on a mo-
bile device having a CPU of 8 cores and clock speed 2000
MHz.

The algorithm was still giving good results on a mobile

device with four cores and a clock speed of 578 MHz. It

encrypted the U-squared net model to an encrypted byte

buffer in 279 ms and stored it to another file in 33 ms.

Inception V2, which took 720 ms in 8 core CPU, took 789

ms on this device to get converted to encrypted byte array

and a further 89 ms to get stored to a data file. The storage

and encryption of the models were at a pace even for the

big model files such as Inception V3 and EfficientNet B5,

which took 2304 ms and 1299 ms total for getting

converted to an encrypted data file, respectively. This

shows that the algorithm is very efficient to encrypt the

models on an android device itself.

While using the encrypted model in the application, the

decryption timing of the encrypted files proved to be ex-

tremely fast in Android OS. On an eight-core CPU device

with a clock speed of 2000MHz, the U-squared net and

SSD Mobilenet encrypted model files took a total of 203

and 279 ms respectively to get decrypted, which is extreme-

ly fast and does not interrupt any routine calls of UI Thread.

Inception V2 with an encrypted file size of 11571 Kb took

643 ms to get decrypted. Also, The algorithm decrypted

large model files EfficientNet B5 and Inception V3 with an

encrypted file size of 16384 Kb and 24473 Kb in 894 ms

and 1766 ms, which rendered a very smooth and uninter-

rupted execution of the Looper thread for UI updatesthread

for UI updates.

Table-2: Performance of the encryption algorithm on a mo-
bile device having a CPU of 4 cores and clock speed 578

MHz.

Table-3. Performance of the decryption algorithm on a mo-
bile device having a CPU of 8 cores and clock speed 2000
MHz.

Also on quad core device the decryption of the models was

very swift and smooth, without interrupting the UI. The U-

Squared Net took 266 ms on this device and the SSD mo-

bilenet was decrypted into a byte buffer in 349 ms which

proves the algorithm decryption phase to be very swift in

small processors also. Big model files were also decrypted

in real time on the worker thread of application.

Table-4:. Performance of the decryption algorithm on a
mobile device having a CPU of 4 cores and clock speed 578
MHz.

6. Conclusion

The algorithms proposed have proven to be significantly

fast and efficient while encrypting and decrypting the ma-

chine learning models. It was tested on multiple devices

with varying CPU architectures. Even in mobile phones

with less processing powers, the algorithm proved to be

very efficient in terms of speed. Even model files having

large sizes are also decrypted in real-time using the algo-

rithm. There is no need to store the model on the cloud and

put extra effort into API development due to the fear of re-

verse engineering of APK and extraction of model files

from them. Inference timings for any task are also improved

as there is no need to send and receive the input data to

model through the internet. This method proves to be very

much secure from obfuscation and last layer isolation. The

cost and efforts to implement the algorithm was also very

less as compared to the last layer isolation and placing the

model on web servers

7. Future Work
There may be a need to put some very large model files into

the APK and use the proposed algorithm to secure them. In

http://www.ijariit.com/

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 15

those cases, it may produce some time lag while decrypting

the model. This process can be made faster. The model file

can be fragmented into multiple files while encrypting it.

The buffer coming from the encryption cipher can be

transferred to different small files, and these files can be

bundled with APK. These fragments can be decrypted

separately on parallel running threads and added to a single

byte buffer which becomes the final model and takes care

of initializing the interpreter. Processing the fragments

parallelly on different worker threads will render very fast

decryption of the encrypted model file.

 If the key of the model file can be stored on the android

device itself, it would be better, as there would be no need

for any server or API calls. The technique to store the key

on the device itself in terms of the build config field or in

the C++ files may be breached. There has to be a method

for storing the key in the APK so that it doesn’t show up on

decompiling.up.

7. REFERENCES

[1] J. Shu, J. Li, Y. Zhang and D. Gu, "Android App Pro-

tection via Interpretation Obfuscation," 2014 IEEE

12th International Conference on Dependable, Auto-

nomic and Secure Computing, 2014, pp. 63-68, doi:

10.1109/DASC.2014.20.

[2] N. A. Fauziah, E. H. Rachmawanto, D. R. I. Moses

Setiadi and C. A. Sari, "Design and Implementation of

AES and SHA-256 Cryptography for Securing Multi-

media File over Android Chat Application," 2018 In-

ternational Seminar on Research of Information Tech-

nology and Intelligent Systems (ISRITI), 2018, pp.

146-151, doi: 10.1109/ISRITI.2018.8864485.

[3] A. Aminuddin, "Android Assets Protection Using RSA

and AES Cryptography to Prevent App Piracy," 2020

3rd International Conference on Information and

Communications Technology (ICOIACT), 2020, pp.

461-465, doi: 10.1109/ICOIACT50329.2020.9331988.

[4] C. Paar and J. Pelzl, "The advanced ecryption standard

(AES) ", Understanding cryptography, pp.87-121,

2010.

[5] S. Tayde and S. Siledar, "File Encryption, Decryption

Using AES algorithm in android Phone" Int. Journel

Adv. Res. Comput. Sci. Softw. Eng, vol. 5, no.5, 2015.

[6] Cipher (Java SE 13 & JDK 13), Aug. 2020, [online]

Available:

https://docs.oracle.com/en/java/javase/13/docs/api/java.

base/javax/crypto/Cipher.html.

[7] Cipher | Android Developers, Aug. 2020, [online]

Available:

https://developer.android.com/refernce/javax/crypto/Ci

pher.

[8] G. Yandji, L. L. Hao, A. Youssouf and J. Ehoussou,

"Research on a Normal File Encryption and Decryp-

tion," 2011 International Conference on Computer and

Management (CAMAN), 2011, pp. 1-4, doi:

10.1109/CAMAN.2011.5778802.

[9] N. A. Advani and A. M. Gonsai, "Performance Analysis

of Symmetric Encryption Algorithms for their Encryp-

tion and Decryption Time," 2019 6th International

Conference on Computing for Sustainable Global De-

velopment (INDIACom), 2019, pp. 359-362.

[10] M. T. Rouaf and A. Yousif, "Performance Evaluation of

Encryption Algorithms in Mobile Devices," 2020 In-

ternational Conference on Computer, Control, Electri-

cal, and Electronics Engineering (ICCCEEE), 2021, pp.

1-5, doi: 10.1109/ICCCEEE49695.2021.9429673.

[11] R. Andriani, S. E. Wijayanti and F. W. Wibowo, "Com-

parision Of AES 128, 192 And 256 Bit Algorithm For

Encryption And Description File," 2018 3rd Interna-

tional Conference on Information Technology, Infor-

mation System and Electrical Engineering (ICITISEE),

2018, pp. 120-124, doi:

10.1109/ICITISEE.2018.8720983.

BIBLIOGRAPHY

Aryan Verma

Student, NIT Hamirpur

He is currently pursuing his Bachelors with major as Computer Science from National institute of Technology,

Hamirpur, India. He has been to various roles of software engineering and currently is a Google Summer of Code

2021 student with Department of Biomedical Informatics (BMI), Emory university School of Medicine. His re-

search interests are Computer Vision, Mobile Computing and Machine Learning.

http://www.ijariit.com/

