ISSN: 2454-132X
Impact Factor: $\mathbf{6 . 0 7 8}$
(Volume 7, Issue 4 - V7I4-1922)
Available online at: https://www.ijariit.com

Open Pyramid Graph and Euler Circuit

Puja
pujakashyap713@gmail.com
Magadh University, Bodh Gaya, Bihar

Shree Nath Sharma
srinathsharma355@gmail.com
S.S. College, Jehanabad, Bihar

Ram Lakhan Prasad
drlakhanprasad@gmail.com
Magadh University, Bodh Gaya, Bihar

ABSTRACT
The concept of open pyramid graph has been introduced and it has been established that it is closely related to BCK-algebra and Euler circuit.

Keywords- Euler Circuit, Open Pyramid Graph, BCK Algebra, and Disjoint Elements

1. INTRODUCTION

Definition (1.1) :- A BCK - algebra is a system ($\mathrm{E}, *, 0$) having a non empty set E , a binary operation $*$ and a fixed element 0 such that elements $x, y, z \in E$ satisfy the conditions:
(i) $0 * x=0$
(ii) $\mathrm{x} * 0=\mathrm{x}$
(ii) $((\mathrm{x} * \mathrm{y}) *(\mathrm{x} * \mathrm{z}) *(\mathrm{z} * \mathrm{y})=0$
(iii) $\quad(x *((x * y)) * y=0$
(iv) $\quad x * y=0=y * x \Rightarrow x=y$.

Definition (1.2) :- A pair $\{x, y\}$ of distinct elements of E is said to be
(a). mutually disjoint if $x * y=x$ and $y * x=y$.
(b) Semi mutually disjoin if either $x^{*} y=x, y * x=0$,
or $y * x=y, x * y=0$
Rashmi Rani and Puja (2021) has established the following useful result
Theorem (1.3):- Let $E=\left\{0 \equiv u_{0}, u_{1}, \ldots . ., u_{n-1}\right\}$ and let $*$ be a binary operation defined on E such that

$$
\begin{equation*}
0 * u_{i}=0, u_{i} * 0=u_{i}, u_{i} * u_{i}=0 \tag{1.1}
\end{equation*}
$$

For $\mathrm{i}=1,2,3$ \qquad , n -1
We also define $u_{i} * u_{j}=u_{i}$ and $u_{j} * u_{i}=0$ for $i<j$
(or $u_{i} * u_{j}=0$ and $u_{j} * u_{i}=u_{j}$) $i, j=1,2, \ldots ., n-1$. Then
$(\mathrm{E}, *, 0)$ is a BCK algebra.
Corollary (1.4) Under the conditions of theorem (1.3) if we take some pairs as mutually disjoint then the result also hold.
Definition(1.5):- Let $G=(V, E)$ be a graph. A path in G is called an Euler path if it includes every edge exactly once. Further, if it is also a circuit then it is called an Euler cicuit.

Example(1.6):- We consider the graphs

Graph (1.1)

Graph (1.2)

International Journal of Advance Research, Ideas and Innovations in Technology

For the graph (1.1) Euler circuit is

$$
\begin{equation*}
a_{1}\left(a_{1} a_{2}\right) a_{2}\left(a_{2} a_{0}\right) a_{0}\left(a_{0} a_{1}\right) a_{1} \tag{1.2}
\end{equation*}
$$

For the graph (1.2), we have Euler circuits as

$$
\begin{gather*}
\mathrm{A}(\mathrm{AB}) \mathrm{B}(\mathrm{BO}) \mathrm{O}(\mathrm{OC}) \mathrm{C}(\mathrm{CD}) \mathrm{D}(\mathrm{DO}) \mathrm{O}(\mathrm{OA}) \mathrm{A} \tag{1.3}\\
\text { and } \mathrm{A}(\mathrm{AO}) \mathrm{O}(\mathrm{OD}) \mathrm{D}(\mathrm{DC}) \mathrm{C}(\mathrm{CO}) \mathrm{O}(\mathrm{OB}) \mathrm{B}(\mathrm{BA}) \mathrm{A} \tag{1.4}
\end{gather*}
$$

So Euler circuit of a graph is not unique.
Definition(1.7):- Let $G=(V, E)$ be a simple graph where $V=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right\}, n=2 m$. If there exists an element a_{0} such that $d\left(a_{0}\right)=n$ and $d\left(a_{i}\right)=2$ for $I=1,2, \ldots, n$ then G is called an open pyramid graph of order $(n+1)$ with vertex a_{0} and base points $a_{0}, a_{1}, a_{2}, \ldots, a_{n}$. In this case edges of an open pyramid graph are
$a_{0} \quad a_{1}, a_{0} a_{2}, \ldots \ldots, a_{0} a_{n}, a_{1} a_{2}, a_{3} a_{4}, \ldots ., a_{n-1} a_{n}$
Here n must satisfy $\mathrm{n} \geq 4$.
Example(1.8):- For $n=6$, the open pyramid graph is as follows:

Here $V=\left\{a_{0}, a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6}\right\}$ where $n=6$ and $m=3$
This open pyramid graph has Euler circuit as

$$
\begin{equation*}
a_{1}\left(a_{1} a_{2}\right) a_{2}\left(a_{2} a_{0}\right) a_{0}\left(a_{0} a_{3}\right) a_{3}\left(a_{3} a_{4}\right) a_{4}\left(a_{4} a_{0}\right) a_{0}\left(a_{0} a_{5}\right) a_{5}\left(a_{5} a_{6}\right) a_{6}\left(a_{6} a_{0}\right) a_{0}\left(a_{0} a_{1}\right) a_{1} \tag{1.5}
\end{equation*}
$$

Here $d\left(a_{0}\right)=6, d\left(a_{i}\right)=2$ for $i=1,2, \ldots, 6$.

2. MAIN RESULTS

Here we prove some results relating to open pyramid graph and BCK algebras.
Theorem (2.1):- For a given open pyramid graph of order $n+1$ where $n=2 m$ there exists a BCK - algebra on a set of $n+1$ elements such that the simple graph associated with mutually disjoint elements coincide with the given open pyramid graph.

Proof:- Let a_{0} be the vertex and $a_{1}, a_{2}, \ldots, a_{n}$. be base points of an open pyramid graph of order $n+1$. Let $E=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then as given in definition (1.7) edges of open pyramid graph are $a_{0} a_{1}, a_{0} a_{2}, \ldots, a_{0} a_{n}, a_{1} a_{2}, a_{3} a_{4}, \ldots, a_{n-1} a_{n}$.

We consider a binary operation ' $*$ ' in E such that a_{0} is taken as zero element and an edge connects two distinct points of the open pyramid graph iff the points are mutually disjoint. This means that pairs

$$
\left\{a_{0}, a_{1}\right\},\left\{a_{0}, a_{2}\right\}, \ldots,\left\{a_{0}, a_{n}\right\},\left\{a_{1}, a_{2}\right\},\left\{a_{3}, a_{4}\right\}, \ldots,\left\{a_{n-1}, a_{n}\right\} .
$$

contain mutually disjoint elements. So binary operation '*' must satisfy

$$
\begin{gather*}
a_{0} * a_{1}=a_{0} * a_{2}=\ldots=a_{0} * a_{n}=a_{0} \tag{2.1}\\
a_{1} * a_{0}=a_{1}, a_{2} * a_{0}=a_{2}, \ldots, a_{n} * a_{0}=a_{n} \tag{2.2}\\
a_{1} * a_{2}=a_{1}, a_{2} * a_{1}=a_{2}, \ldots, a_{n-1} * a_{n}=a_{n-1} \tag{2.3}\\
a_{n} * a_{n-1}=a_{n}
\end{gather*}
$$

We also assume that $a_{i} * a_{i}=a_{0}$ for $i=0,1,2, \ldots, n$.
For pairs $\left\{a_{2}, a_{3}\right\},\left\{a_{4}, a_{5}\right\}, \ldots,\left\{a_{n-2}, a_{n-1}\right\}$ which are not connected by an edge, we define

$$
\begin{array}{r}
\quad\left(a_{i} * a_{j}=a_{i} \text { and } a_{j} * a_{i}=a_{0}, i<j\right) \\
\text { or }\left(a_{i} * a_{j}=a_{0} \text { and } a_{j} * a_{i}=a_{j}, i<j\right) \tag{2.5}
\end{array}
$$

In other words, the elements of these pairs are taken as semi mutually disjoint. Now using theorem (1.3) and corollary (1.4) we see that $\left(E,{ }^{*}, a_{0}\right)$ is a BCK - algebra.

If two points of E are connected by an edge iff they are mutually disjoint then the simple graph so obtained coincides with given open pyramid graph.

Hence the result.

International Journal of Advance Research, Ideas and Innovations in Technology

Theorem(2.2) For a given open pyramid graph of order $n+1$ where $n=2 m$ there exists a BCK - algebra on a set of $n+1$ elements such that the simple graph associated with semi mutually disjoint elements coincide with the given open pyramid graph.

Proof: Let a_{0} be the vertex and $a_{1}, a_{2}, \ldots, a_{n}$. be base points of an open pyramid graph of order $n+1$. Let $E=\left\{a_{0}, a_{1}, a_{2}, \ldots, a_{n}\right\}$. Then as given in definition (1.7) edges of open pyramid graph are $\quad a_{0} a_{1}, \ldots a_{0} a_{n}, a_{1} a_{2}, a_{3} a_{4}, \ldots, a_{n-1} a_{n}$.

We consider a binary operation ' $*$ ' in E such that a_{0} is taken as zero element and an edge connects two distinct points of the open pyramid graph iff the points are semi - mutually disjoint. This means that pairs

$$
\left\{a_{0}, a_{1}\right\},\left\{a_{0}, a_{2}\right\}, \ldots,\left\{a_{0}, a_{n}\right\},\left\{a_{1}, a_{2}\right\}, \ldots \ldots \ldots,\left\{a_{n-1}, a_{n}\right\}
$$

contain semi mutually disjoint elements. So binary operation '*' must satisfy

$$
\begin{equation*}
a_{0} * a_{1}=a_{0}, a_{1} * a_{0}=a_{1} ; a_{0} * a_{2}=a_{0}, a_{2} * a_{0}=a_{2}, \ldots \ldots \ldots \ldots \ldots \ldots a_{0} * a_{n-1}=a_{0}, a_{n-1} * a_{0}=a_{n-1}, a_{0} * a_{n}=a_{0}, a_{n} * a_{0}=a_{n} \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
a_{1} * a_{2}=a_{1}, a_{2} * a_{1}=a_{0} ; a_{3} * a_{4}=a_{3}, a_{4} * a_{3}=a_{0}, \ldots \ldots \ldots \ldots \ldots \ldots \ldots a_{n-1} * a_{n}=a_{n-1}, a_{n} * a_{n-1}=a_{0} \tag{2.7}
\end{equation*}
$$

We also assume

$$
a_{i} * a_{i}=0 \text { for } i=0,1,2, \ldots, n .
$$

For pairs $\left\{a_{2}, a_{3}\right\}\left\{a_{4}, a_{5}\right\}, \ldots .,\left\{a_{n-2}, a_{n-1}\right\}$ which are not connected by an edge, we define

$$
\begin{align*}
& a_{2} * a_{3}=a_{2}, a_{3} * a_{2}=a_{3}, \ldots, a_{n-2} * a_{n-1}=a_{n-2}, \\
& a_{n-1} * a_{n-2}=a_{n-1} \tag{2.8}
\end{align*}
$$

In other words, the elements of these pairs are taken as mutually disjoint. Using corollary (1.4), we see that ($\mathrm{E},{ }^{*}, \mathrm{a}_{0}$) is a BCK algebra. Further, if two points of E are connected by an edge iff they are semi - mutually disjoint then the simple graph so obtained coincides with the given open pyramid graph.
Hence the result.
We also have the following useful result.
Theorem (2.3):- Every open pyramid graph with vertex a_{0} and base points $a_{1}, a_{2}, \ldots, a_{n} ; n=2 m$ has an Euler circuit.
Proof :- Suppose that $\mathrm{P}(\mathrm{m})$ stands for the statement given in the theorem (2.3). From examples (1.6) and (1.8) we see that $\mathrm{P}(1)$, $\mathrm{P}(2)$, and $\mathrm{P}(3)$ are satisfied. We assume that $\mathrm{P}(\mathrm{m}-1)$ is true. Then as explained definition (1.7) we have Euler circuit as

$$
\begin{equation*}
a_{1}\left(a_{1} a_{2}\right) a_{2}\left(a_{2} a_{0}\right) a_{0}\left(a_{0} a_{3}\right) a_{3} \ldots \ldots \ldots \ldots \ldots a_{2 m}-2\left(a_{2 m}-2 a_{0}\right) a_{0}\left(a_{0} a_{1}\right) a_{1} \tag{2.9}
\end{equation*}
$$

Now we introduce two points $\mathrm{a}_{2 \mathrm{~m}}-2$ and $\mathrm{a}_{2 \mathrm{~m}}$.
These points are connected with a_{0} as $\left(\mathrm{a}_{2 \mathrm{~m}-1}-\mathrm{a}_{0}\right)$ and ($\mathrm{a}_{2 \mathrm{~m}} \mathrm{a}_{0}$). Also $\mathrm{a}_{2 \mathrm{~m}}-1$ and $\mathrm{a}_{2 \mathrm{~m}}$ are connected by $\left(\mathrm{a}_{2 \mathrm{~m}}-1 \mathrm{a}_{2 \mathrm{~m}}\right)$.
Now we change the circuit of (2,9) by ommiting $a_{0}\left(a_{0} a_{1}\right) a_{1}$ and introducing $a_{0}\left(a_{0} a_{2 m-1}\right) a_{2 m-1}\left(a_{2 m-1} a_{2 m}\right) a_{2 m}\left(a_{2 m} a_{0}\right) a_{0}\left(a_{0} a_{1}\right)$ a_{1}.
This gives a circuit in the open pyramid graph with vertex a_{0} and base points $\mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{n}}$ where $\mathrm{n}=2 \mathrm{~m}$. In other words $\mathrm{P}(\mathrm{m})$ is satisfied.
So using Principles of Mathematical induction we see that $P(m)$ is satisfied for all positive integers m.

REFERENCES

[1] Y. Imai, and K. Iseki, On axiom systems of propositional Calculi, XIV Proc. Japan. Acad. 42 (1966), 19 - 22.
[2] Rashmi. Rani, Disjoint elements in a BCK - algebras, Acta Ciencia Indica, vol.XXXIX M No. 4 (2013) , 459 - 462.
[3] Rashmi. Rani, R.L.Prasad. Disjoint elements in some specific Shadab Ilyas BCK - algebras, Acta Ciencia Indica . Vol.XL M No. 4 (2014), 527 - 532.
[4] Rashmi Rani, Puja, BCK /BCH - algebras with mutually disjoint elements, ICCI ASH - 2020.
[5] Rashmi Rani, Puja, BCK /BCH - algebras with semi mutually disjoint elements IEASMA 2021

