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ABSTRACT 
 

A model of the manipulator robot is available. It presents properties necessary for its integration in a reinforcement learning 

loop. This is the subject of the article [1].Three reinforcement learning algorithms are used, TRPO, PPO2 and ACKTR. The first 

two algorithms learn well, but for the third one the reward curve fails to find an increasing variation. Rather an erratic variation 

is observed. Experiments or use cases of the policy functions in controlling the robot were carried out. It is ok for the first two. 

The robot moves and reaches the targets presented after some iteration. For ACKTR there is no complete convergence but an 

oscillation around a fixed position. 
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1. INTRODUCTION 
Robot’s model of the paper [1] is prerequisites for what follows. Here its use is focused on control using reinforcement learning 

approaches. Three algorithms are implemented for training the robot. The observations recorded during the training are reported in 

this paper.  Afterwards, use cases are simulated and the evolutions of the values are recorded as well as the curves of variations on 

each joint of the robot. 

 

2. ROBOT MODEL 
The modeling is done with ROS. Its description is written in XML file in URDF format.  An overview of the robot in Rviz is given 

by Fig -1. 

 
Fig -1: Visualization of the robot model 
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There are quantities variables needed in order to implement the model. Variables and values of the model implement cinematic, 

dynamic and geometric properties. Table -1 repertories link’s variables and their respective values. 

 

Table -1: Link’s variables and values 

Link #i Mass Inertial tensor shape Dimensions 

0 1024 𝐼 = [
170.667 0 0

0 170.667 0
0 0 170.667

] cubic edge=1 

1 9.655 𝐼 = [
13.235 0 0

0 13.235 0
0 0 9.655

]   

2 57.906 𝐼 = [
12.679 0 0

0 12.679 0
0 0 0.651

] cylindrical 
radius=0.15 

height=0.8 

3 57.906 𝐼 = [
12.679 0 0

0 12.679 0
0 0 0.651

] cylindrical 
radius=0.15 

height=0.8 

4 57.906 𝐼 = [
12.679 0 0

0 12.679 0
0 0 0.651

] cylindrical 
radius=0.15 

height=0.8 

5 18.056 𝐼 = [
0.479 0 0
0 0.479 0
0 0 0.204

] cylindrical 
radius=0.15 

height=0.25 

 

  

 
Link 0 Link 1 Link 2 

   
Link 3 Link 4 Link 5 

 

Fig -2: Visualization of individual link shape 

 

The images of each articulation are shown in Fig -2. Local frames and relative position vectors are represented to illustrate relative 

joint positions. The articulations number 2, 3 and 4 are geometrically identical. Table -5 shows that their dynamic properties are 

also identical. i.e. they have the same inertia tensor, the same mass, the same dimensions and shape. 

 

PID gains and the types of controllers and the joints on which they work must be specified in a YAML file. Table -2 is summarizes 

this information: 

 

Table -2: PID implementation on the model 

YAML code PID parameters 

 

Joint #1 

𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 = [2000 100 500] 

Joint #2 

𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 = [50000 100 2000] 

Joint #3 

𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 = [20000 50 1000] 

Joint #4 

𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 = [2000 50 200] 
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Joint #5 

𝐾𝑝, 𝐾𝑖 , 𝐾𝑑 = [700 50 70] 

 

ROS works with various module of program. The module called  “JointStateController” returns information from joint positions.  

And the “JointPositionController” module receives the input controls for the robot’s model. 

 

The conclusions of the paper [1] are: 

The robot model is functional and has fairly realistic kinematic and dynamic behaviors. The controllers work correctly. We are 

rather confident about its use in the rest of our work. This model will then be used to study commands using reinforcement learning 

algorithms. We think that this paper presents a way to model a robot, which will not necessarily be a manipulator. 

 

3. TRAINING 
The robot model is integrated in a specific reinforcement learning environment. The algorithm and the robot are linked through 

standardized interfaces. Thus the algorithms are interchangeable at will. Three algorithms are used: 

- TRPO 

- PPO 

- ACKTR 

 

3.1 Training steps 

Inside the training loop the following steps are carried out: 

1) Perform an action 

2) Take an observation from the environment 

3) Check if a collision has occurred or not 

4) Calculate a reward 

5) Return a status informing if the current episode ends or not 

6) Reset the agent according to the status of step 5 

 

3.2 Programming 

In short, it is about writing the training script and coding the training environment. The training script is the file where the 

reinforcement learning algorithm is specified and then initialized. For our purposes, we will use the three files in Fig -2.  

 

 
Fig -2: List of training scripts 

 

The three files correspond to the three algorithms TRPO, PPO and ACKTR used for the studies of the application of reinforcement 

learning of the manipulator robot. 

 

3.3 Training environment 

First the most basic environment is modeled. It is an abstraction of the basic concepts of reinforcement learning. From this basic 

object, the other types of environment are derived by inheritance as shown in Fig -3. 
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Fig -3: Hierarchy of environment modeling classes 

 

3.4 Basic environment 

This is a model of the general characteristics common to reinforcement learning. Fig -4 is an illustration of these general 

characteristics. 

 
Fig -4: Agent-environment interaction 

 

This class encapsulates models corresponding to functionalities. An object named env corresponds to the environment in Fig -4. 

Then env implements a function env.step(). This function returns the following objects : 

. observation representing the observations on the environment, 

. reward : a real number representing the reward obtained, 

. done a boolean variable indicating the end of an episode, 

. info a dictionary of information for debugging. 

 

The action_space and observation_space objects are containers. They contain all possible actions in the case of discrete sets. In the 

continuous domain, they are functions that return an action depending on the observation. In our case, it is a neural network. 

 

3.5 Physics engine 

It is an object that has transparent functionality to the user. It inherits the basic environment. Then, it adds functionalities allowing 

a simulation according to the laws of classical mechanics, thus offering a realistic environment similar to the working conditions of 

a robot. 

 

3.6 Robot environment 

Inherited from the physics engine environment, the Robot environment implements the specificities of the robot object of 

reinforcement learning. It contains all the functionalities that allow controlling the robot from a command signal. Each joint of the 

robot can be solicited. Each possible combination of commands constitutes an action that the robot and its environment perform. 

 

3.7 Task environment 

The task environment contains the contexts of the specific task that the robot has to learn. It depends on the task and the robot. There 

are then two cases: 

For the same robot but with a different task. It is in the task environment that the modifications will be made. The training can be 

done without modification in the robot environment.  

 

For the same task but with a different robot. Modifications may be made on this class if the new robot does not have the same 

interfaces as the old robot. 

 

3.8 Training with TRPO 

The goal of training is to produce the policy function that would be the most optimal for the task at hand. This policy function is 

realized with a neural network. The characteristics of the machine used are as follows 

Processor: Intel Core i3, 4th generation 
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RAM: 4GB 

Hard disk: 500Go 

 

Training time: 1 day, 1 hour, 15 minutes and 25 seconds. 

 

The neural network used to model the policy function has the following characteristics. The number of internal layers is given by 

the parameter num_layers. Here its value is 2. And the parameter num_hidden has the value 64. So we have a neural network made 

of 2 internal layers each containing 64 neurons. 

 

Fig -5 below gives the evolution of the rewards obtained during the whole learning process. A progressive increase in reward is 

observed. The algorithm is stable and the robot evolves positively and acquires a better and better policy over time. 

 

 
Fig -5: Evolution curve of the reward returned by the environment for TRPO 

 

3.9 Training with PPO2 

Training time: 23 hours, 27 minutes and 27 seconds 

The neural network modeling the policy is similar to the one used with the TRPO algorithm. The neural network used to model the 

policy function has the following characteristics: 

num_layers = 2 

num_hidden = 16. 

It is a network with two internal layers with 16 neurons each. 

A curve similar to the previous algorithm is obtained as shown in Fig -6 below. 

 

 
Fig -6: Evolution curve of the reward returned by the environment for PPO2 
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3.10 Training with ACKTR 

What distinguishes this algorithm is that it uses a technique called Kronecker-factored Approximate Curevature. This is a method 

that allows, among other things, to design neural networks that more efficiently model the dynamic gradient descent learning 

algorithm. 

 

Learning time: 23 hours, 36 minutes and 18 seconds 

 

Hyperparameters are: number of layers 2, number of hidden neurons 64. 

 

 
Fig -7: Evolution curve of the reward returned by the environment for ACKTR 

 

The learning has failed. The reward variation curve is always below zero. It does not show any positive value. Its variation is quite 

random for a long learning time, while this curve is recorded for more than 4500 iterations. The policy never found the right direction 

of increasing reward to accumulate positive values. The robot will not reach its goal. 

 

3.11 Comparisons and discussions 

Characteristic points: 

To compare the results of the three training, characteristic information of the reward variation curves was noted. They are shown in 

Table -3 below. 

 

Table -3: Three characteristic points of the three experiments 
 TRPO PPO2 ACKTR 

Simulation time (minutes) 1515 1407 1416 

Number of iterations 4446 11320 4749 

Maximum value 3830 3571 -1697 

 

Algorithm Speeds: 

From the numerical values in Table -3, the relative speeds of each algorithm during learning can be deduced. The simulations were 

run on a single computer to allow performance comparisons. Table -4 compares these relative speeds. PPO2 is the fastest. 

 

Table -4: Relative learning speeds 

Algorithm Number of cycles per minute rank 

TRPO 2.93465347 3 

PPO2 8.04548685 1 

ACKTR 3.35381356 2 

 

Convergences: 

The algorithm converges well when it accumulates positive values for each iteration. The larger the numerical value, the better the 

performance of the algorithm.  On Table -5 we observe that TRPO and PPO2 converge well with similar values. TRPO is slightly 

ahead. But for ACKTR there is no convergence at all. 

Table -5: Relative Convergences 

Algorithm Final value of the reward Converge 

TRPO 3830 YES 

PPO2 3571 YES 

ACKTR -1697 NO 
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4. USE CASES 
After the training stage, we move on to the use stage. We have two points of view. Observations with respect to the agent and the 

one with respect to the robot. 

 

4.1 Data structure 

The agent evolves under the direction of his political function. Fig -8 shows the flow of information during execution. The policy 

function is here already well fixed during learning. The policy presents an action to be executed by the environment. In turn, the 

latter returns the reward and a new observation. The reward is a scalar, the observation is a vector. The latter represents the current 

state in which the agent is. The new observation is used by the policy to move the agent and the robot in a new configuration getting 

closer and closer to the goal. 

 
Fig -8 : Information flow at the agent level during the execution 

 

The observation vector is illustrated in Fig -9. It is formed by two types of information. This information is provided by the 

environment and describes the state of the system. 

 

 
Fig -9 : Constitution of the observation vector 

 

The action vector is formed by the six instructions to be presented at the six joints of the robot. The policy function is a neural 

network that recommends an action according to the state of the system. This function works in two continuous spaces. These are 

the spaces of states and actions. The environment is constituted by the model of the robot itself and the laws of mechanics. The 

behavior of the robot is a resultant of internal and external influences. 

 

4.2 Evolution of the reward during use cases 

For the two algorithms that converge (Fig -10 and Fig -11) the curves show a relatively sustained increase.  

 

The robot reaches its final position after a few dozen intermediate positions.  The number of iterations is 50 for TRPO and 70 for 

PPO. TRPO arrives faster than PPO but it goes through a local minimal during its evolution. This is the risk run by this algorithm. 

To mitigate this risk PPO limits the updates of the policy parameters during training. 

 

The number of iterations is higher for PPO because it is an algorithm that limits excessive variations on the parameters of its policy 

function. But, thanks to this, its curve has a sustained increase. This way the learning process is more secure and confident even if 

it is longer. 

 

For the ACKTR algorithm, the curve has only negative values. Moreover, it shows erratic variations. The curve in Fig -12 was 

recorded for an excessively long time for one run. After a number of iterations of 700, the agent still does not recover satisfactory 

rewards. There is no convergence and the learning has not been successful. The policy function is not exploitable. 

 
Fig -10 : Evolution curve of the reward returned by the environment for TRPO 
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Fig -11: PPO reward curve for execution 

 

 
Fig -12: ACKTR reward curve for execution 

 

4.3 Data collected from the robot 

At the robot level, each action computed by the neural network of the policy function translates into an instruction for the controller 

at each joint. The policy function seeks to obtain a positive reward at each iteration. In doing so, it makes the robot move, so as to 

decrease the distance between the objective point and the current point where the robot is located. The evolution of this error allows 

to appreciate the evolution of the system in its search for a solution. At the same time as the monitoring of the error, it is also possible 

to follow directly on the robot the variations at the joints. Thus, the two types of observation made on the robot are : 

- Positional error 

- Joint values 

 

Positional error: 

For the two algorithms that converge, we have the curves of Fig -13 and 14. The values for each x, y, and z axis vary gradually to 

finally reach zero values. The Cartesian distance √𝑒𝑥2 + 𝑒𝑦2 + 𝑒𝑧2 decreases and cancels at the end. The evolution of this distance 

is given by the black colored curves. For the ACKTR algorithm, the errors on the axes as well as the Cartesian distance do not tend 

towards zero, even in the long run. The curves of Fig -15 give the evolution of these errors until about 7000 iterations.  We can say 

that the curves do not converge to zero but oscillate around the fixed values. Fig -16 shows the same curves but in the shorter term. 

On this last one, we have the errors until the end of 250 iterations. From around the 50th iteration the errors rotate around the values: 

 
[𝑒𝑥 𝑒𝑦 𝑒𝑧] = [0.2 0 0.05] 

 

This observation would lead to the conclusion that the algorithm is not at fault, but the problem could be in its adaptation to the 

robot. 

 
Fig -13: Evolution of positon errors with TRPO for the execution 
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Fig -14 : Evolution of position errors with PPO2 for the execution 

 
Fig -15 : Evolution of the position errors with ACKTR for the execution 

 

 
Fig -16 : Evolution of the position errors with ACKTR for the execution 

 

Joint values: 

The second class of observations on the robot focuses directly on the rotation angles of the joints. 

 

 
Fig -17: Evolution of joint angles with TRPO 
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Fig -18: Evolution of joint angles with PPO 

 

At each iteration, each joint changes its angle around its axis of rotation. The instructions come from the policy function. At each 

iteration, it returns a vector with six components. Each component of the action vector corresponds to a joint on the robot. Thus the 

robot moves in the space of possible states. The environment returns a reward and a new observation. Fig -17 and Fig -18 show the 

variation curves for TRPO and PPO. 

 

 
Fig -19: Evolution of joint angles with ACKTR 

 

 
Fig -20: Evolution of joint angles with ACKTR for 250 iterations 

 

For ACKTR, the joints never stabilize. But in the long run, we observe that each joint moves back and forth around a fixed position. 

 

4.4 Comparison for use cases 

For the use cases, the characteristic data on the reward curves are: 

 

Table -6: Characteristic points on the reward curves 
 TRPO PPO2 ACKTR 

Number of iterations 45 69 7031 

Maximum value 4.1565 5.5703 -0.2770 
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TRPO converges faster with 45 iterations but at a lower maximum value than PPO2. The latter has the merit of presenting a sustained 

increasing curve despite a relatively low speed compared to TRPO. The ACKTR algorithm does not converge. The first two 

algorithms have relatively short execution times and stop because they have reached their objectives. But, the third one is caught in 

an endless loop since the output conditions are never fulfilled. The robot oscillates without finding a final resting position. 

 

5. CONCLUSIONS 
TRPO, PPO2 and ACKTR algorithms were taken one by one to train the agent. The first two produced stable and convergent policy 

functions. The third one produces a reward curve that fails to exceed the zero thresholds. Apparently the algorithm does not work, 

but the execution on the robot gives indications. Indeed it seems that it is not the algorithm that does not work but the coupling with 

the robot that destabilizes the system. This observation opens the way to another hypothetical research topic. Use of commands, i.e. 

trained political functions allows to draw conclusion. The concept of control by reinforcement learning a robot works. It seems that 

we have something concrete that works. The results obtained are comparable to inverse kinematic controls. For a new approach of 

Machine Learning type control, we find that it is a start that can lead to a new way of controlling a robot 
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