Design waste water treatment plant for township

Aniruddh J. Bambole
aniruddhbb0358@gmail.com
JD College of Engineering and Management, Nagpur, Maharashtra

Ekta A. Meshram
ektameshram1000@gmail.com
JD College of Engineering and Management, Nagpur, Maharashtra

Saurabh L. Kinnake
kinnake13@gmail.com
JD College of Engineering and Management, Nagpur, Maharashtra

Udaykumar B. Gutta
udaygutta123@gmail.com
JD College of Engineering and Management, Nagpur, Maharashtra

Satyafulesh R. Rangari
satyafulesh@gmail.com
JD College of Engineering and Management, Nagpur, Maharashtra

Shital Navghare
shital.navghare2012@gmail.com
JD College of Engineering and Management, Nagpur, Maharashtra

ABSTRACT

Wastewater treatment is a process used to remove contaminants from wastewater or sewage and convert it into an effluent that can be returned to the water cycle with acceptable impact on the environment, or reused for various purposes (called water reclamation). The treatment process takes place in a wastewater treatment plant (WWTP), also referred to as a Water Resource Recovery Facility (WRRF) or a Sewage Treatment Plant (STP) in the case of domestic wastewater. Pollutants in wastewater are removed, converted or broken down during the treatment process. Wastewater is any water that has been contaminated by human use. The waste water is the used water from any combination of domestic, industrial, commercial, or agricultural activities, surface runoff or storm water. We planning a residential township for 10,000 populations. In this township we design a small wastewater treatment plant. In this treatment plant we design to treat a domestic waste water. In waste water treatment plant, we design a units of waste water treatment plant.

Keywords: waste water, Design, screening, grit chamber, sedimentation tank, oxidation pond,

1. INTRODUCTION

Wastewater is any water that has been contaminated by human use. The waste water is the used water from any combination of domestic, industrial, commercial, or agricultural activities, surface runoff or storm water and any sewer inflow or sewer infiltration the wastewater classify as a domestic wastewater from households, municipal wastewater from communities it is also called as sewage and industrial wastewater. Almost 80% of water supply flow back into the ecosystem as wastewater currently, India has the capacity to treat approximately 37% of its wastewater or 22,963 million liter per day (MLD) against a daily sewage generation approximately 61,754 MLD according to the 2015 report of the central pollution control board.

1.1 Planning of Residential township

We plan a small residential township of 10,000 peoples. In our township we plan many areas like residential area, commercial area, education area and market area. We assume a location near Nagpur city for planning of residential Township Including area 178.91 acer, in this residential township we design a Waste water treatment plant for next 3 decades

Fig. 1: Adopted location for Planning of residential Township

2. DESIGN PERIOD

2.1. Design population

For the wastewater treatment plant design a population for next 30 years for estimating water demand for next 30 years Total population of Township in current year = 10,000 (2021)

Calculate Population for 2051? (3 decade)

Assume the population,

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>7,000</td>
</tr>
<tr>
<td>2011</td>
<td>8,000</td>
</tr>
</tbody>
</table>
By Incremental Increase method

<table>
<thead>
<tr>
<th>Year</th>
<th>Population</th>
<th>Increase in Population</th>
<th>Incremental Increase</th>
</tr>
</thead>
<tbody>
<tr>
<td>2001</td>
<td>7,000</td>
<td>1000</td>
<td>1000</td>
</tr>
<tr>
<td>2011</td>
<td>8,000</td>
<td>2000</td>
<td>1000</td>
</tr>
<tr>
<td>2021</td>
<td>10,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2051</td>
<td>?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total Population = 3000

\[P_n = P_0 + nX + \frac{n(n+1)}{2} \times Y \]

\[X = \frac{3000}{2} = 1500 \]

\[Y = \frac{1000}{1} = 1000 \]

\[P_{2051} = 10,000 + 3 \times 1500 + \frac{3(3+1)}{2} \times 1000 \]

\[= 29,889 \text{ m}^3/\text{day} \]

Total Population of Township for 3 decade (2051) is 20, 500

2.2 Estimate of water demand

Rate of water supply = 135 Lpcd

In case of water supply same losses occurs during supplying water so assume 20% losses

Total rate of water supply (135Lpcd + 20% losses)

\[135 \times 20, 500 = 27, 67, 500 \text{ Lpcd} + 20 \% \text{ losses} \]

Total water demand: 27, 67, 500 + 5, 53, 500 = 33, 21, 000

\[\text{LPD} = 3321 \text{ m}^3/\text{day} \]

Note:- Runoff-coefficient is different for Concrete surface \(C = 0.60 \) for ground surface \(C = 0.25 \)

Rainfall Intensity for Nagpur is 1064.1mm (This is annually rainfall intensity) (0.12mm/hr)

<table>
<thead>
<tr>
<th>Sr. No.</th>
<th>Parameters</th>
<th>Area (m2)</th>
<th>Area (km2)</th>
<th>Runoff coefficient</th>
<th>Rainfall Intensity (mm/hr)</th>
<th>Discharge (Q) m3/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Residential Buildings</td>
<td>239702.9</td>
<td>0.2397029</td>
<td>0.60</td>
<td>0.12</td>
<td>0.004794058</td>
</tr>
<tr>
<td>2</td>
<td>Play ground and club house</td>
<td>57515.9</td>
<td>0.0575159</td>
<td>0.25</td>
<td>0.12</td>
<td>0.0004794058</td>
</tr>
<tr>
<td>3</td>
<td>hospital Buildings</td>
<td>17513.25</td>
<td>0.01751325</td>
<td>0.60</td>
<td>0.12</td>
<td>0.0004794058</td>
</tr>
<tr>
<td>4</td>
<td>Secondary School Buildings</td>
<td>20274.59</td>
<td>0.02027459</td>
<td>0.60</td>
<td>0.12</td>
<td>0.0004054</td>
</tr>
<tr>
<td>5</td>
<td>Primary School Buildings</td>
<td>13943.92</td>
<td>0.01394392</td>
<td>0.60</td>
<td>0.12</td>
<td>0.0002788</td>
</tr>
<tr>
<td>6</td>
<td>Open Space</td>
<td>17413.25</td>
<td>0.01741325</td>
<td>0.25</td>
<td>0.12</td>
<td>0.0001451</td>
</tr>
<tr>
<td>7</td>
<td>Waste Water Treatment Plant</td>
<td>36598.3</td>
<td>0.0365983</td>
<td>0.25</td>
<td>0.12</td>
<td>0.0003049</td>
</tr>
<tr>
<td>8</td>
<td>solid waste management</td>
<td>36598.3</td>
<td>0.0365983</td>
<td>0.25</td>
<td>0.12</td>
<td>0.0003049</td>
</tr>
<tr>
<td>9</td>
<td>Garden / Park</td>
<td>17221.56</td>
<td>0.01722156</td>
<td>0.25</td>
<td>0.12</td>
<td>0.0001435</td>
</tr>
<tr>
<td>10</td>
<td>Garden / Park</td>
<td>17221.56</td>
<td>0.01722156</td>
<td>0.25</td>
<td>0.12</td>
<td>0.0001435</td>
</tr>
<tr>
<td>11</td>
<td>Garden / Park</td>
<td>17221.56</td>
<td>0.01722156</td>
<td>0.25</td>
<td>0.12</td>
<td>0.0001435</td>
</tr>
<tr>
<td>12</td>
<td>Amenity Area</td>
<td>7385.74</td>
<td>0.00738574</td>
<td>0.25</td>
<td>0.12</td>
<td>0.00006154</td>
</tr>
<tr>
<td>13</td>
<td>Amenity Area</td>
<td>7385.74</td>
<td>0.00738574</td>
<td>0.25</td>
<td>0.12</td>
<td>0.00006154</td>
</tr>
<tr>
<td>14</td>
<td>Commercial Building</td>
<td>24867.2282</td>
<td>0.0248672282</td>
<td>0.60</td>
<td>0.12</td>
<td>0.0004973</td>
</tr>
</tbody>
</table>

Total Discharge = 0.00776 m3/sec

\[Q = \frac{C \times I \times A}{3.6} \]

Note: Estimated wastewater is 90% of the total water supply.

So, estimated waste water is

\[= \frac{3321}{90} \times 100 \]

\[= 29,889 \text{ m}^3/\text{day} \]

The estimated wastewater is 90% of the total water supply

The total water demand for 20, 500 population is 3321 m3/day

<table>
<thead>
<tr>
<th>Unit</th>
<th>M3/day</th>
<th>M3/hr</th>
<th>M3/sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q</td>
<td>3321</td>
<td>138.37</td>
<td>0.0384</td>
</tr>
</tbody>
</table>

2.3 Estimate Strom Water Discharge :-

The storm runoff is that portion of precipitation, which drains over the ground. Estimation of such runoff reaching the storm on the intensity duration of the tributary area and time required for such flow to reach the sewer. The storm water discharge calculated by following formula

\[Q = \frac{C \times I \times A}{3.6} \]

where, \(Q \) = Discharge (m3/s)
\(C \) = Runoff Coefficient
\(I \) = Rainfall intensity (mm/hr)
\(A \) = Area of Catchment (Km2)

The total water discharge for a township is 791.05 m3/day

Estimated storm water for different unit of township. The total wastewater estimated from township is addition of wastewater discharge and a storm water discharge.

Now,

\[\text{Total storm water discharge} = 701.05 \text{ m3/day} \]

\[\text{waste water discharge} = 2988.9 \text{ m3/day} \]
2.4 Calculation for Diameter of Pipe

The drainage system is adopted in township for flowing of waste water to the wastewater treatment plant. The calculate diameter and velocity of drainage pipe. The total wastewater discharge is 3689.95 m³/day (42.70 lit/day)

Assume the slope of pipe is 1/250 and manning coefficient of roughness of plastic pipe is 0.011 (for drainage system pipeline we adopted a plastic pipe or UPVC pipe). Manning’s formula for gravity flow:

\[
V = \frac{1}{n} \left[R^{0.67} S^{0.5} \right]
\]

For Circular Conduits,

\[
V = \frac{1}{n} (3.968 \times 10^{-3}) D^{0.67} S^{0.5}
\]

And

\[
Q = \frac{1}{n} (3.118 \times 10^{-6}) D^{2.67} S^{0.5}
\]

Where,

\(Q \) = Discharge in lit/sec

\(S \) = slope of hydraulic gradient

\(D \) = Internal diameter of pipeline in mm

\(R \) = Hydraulic Radius in m

\(V \) = Velocity in m/s

\(n \) = Mannings coefficient of roughness

Assume,

\[
\text{Slope} = \frac{1}{250}
\]

\(n = 0.011 \) (Plastic pipe)

(Our total waste water discharge = 3689.95 m³/day)

\(Q = 3689.95 \text{ m}^3/\text{day} = 42.70 \text{ lit/sec} \)

Calculation for diameter :-

\[
Q = \frac{1}{n} (3.118 \times 10^{-6}) D^{2.67} S^{0.5}
\]

\[
Q = \frac{1}{0.011} (3.118 \times 10^{-6}) D^{2.67} (\frac{1}{250})^{0.5}
\]

\[D = 244.54 \text{ mm}, \text{ say } D = 250 \text{ mm} \]

Calculation for Velocity :-

\[
V = \frac{1}{n} (3.968 \times 10^{-3}) D^{0.67} S^{0.5}
\]

\[
V = \frac{1}{0.011} (3.968 \times 10^{-3}) (250)^{0.67} (\frac{1}{250})^{0.5}
\]

\[V = 0.9 \text{ m/s} \]

The diameter of pipe is 250 mm and the velocity of pipe is 0.9 m/s

3. DESIGN OF WASTE WATER TREATMENT PLANT

Process of wastewater treatment plant:

Wastewater follows a determined treatment path in order to achieve water quality standard, regardless of weather conventional treatment or advance treatment system are used. The treatment of waste water processes divided into three parts:

(a) Primary Treatment: Primary treatment involves the separation and homogenization of the remaining liquid waste. This solid matter will either floated or readily settle out due to gravity. Physical process such as screening and grit removal treatment large object such as stiks, polythene etc.

(b) Secondary Treatment: The secondary treatment involves a biological process. Wastewater is exposed to aerobic bacteria where the biological oxygen demand (BOD) is reduced. Aerobic bacteria are used to break down pathogens, other contaminants and suspended organic matter into carbon dioxide, water and biosolids.

(c) Tertiary Treatment: Tertiary treatment is carried out to improve the ‘final look’ of water, making it indistinguishable from any freshwater source. It is done to deodorize, decolor and further oxidize if required. There has been an increase in the number of wastewater treatment facilities that employ a tertiary treatment process. Tertiary treatment involves removing nutrients such as phosphorus and nitrogen from wastewater.

Fig. 2 Flow chart of waste water treatment plant
3.1 Design for Unit of Waste Water Treatment Plant

3.1.1 Screening:
Screening is the very first operation carried out at a wastewater treatment plant and consists of passing the wastewater through different types of screens. We have design medium screen. The spacing between the bars about 6 to 40 mm this screen ordinary collect 30 to 90 liters of material per millions liter of wastewater. The screening usually contains some quantity of organic material, which may purify and become offensive, and must, therefore be disposed of by incineration. The screen is needed to trap the floating matters like sachets, plastic, milk packets, groceries bags etc. Medium screen is made of steel bars, fixed parallel to one another at desired spacing on rectangular steel frame and are called as bar screen. Assume, clear spacing between the bars is 1cm and diameter of bar is 1cm, also the depth of water is 0.5m and velocity is 0.8 m/sec which is not exceed to 0.8 m/sec

The Peak flow = 3689.95 m³/day = 0.042 m³/sec

Now,
- Diameter of bars = 1 cm = 0.01 m
- Clear spacing between bars = 1 cm = 0.01 m
- Depth of water = 0.5m

Net area of screening opening required
\[
A = \frac{Q}{V} = \frac{0.042}{0.8} = 0.052 \text{ m}^2
\]

Net width of screen
\[
\frac{\text{Area}}{\text{depth of water}} = \frac{0.052}{0.5} = 0.104\text{m}
\]

Now, the number of openings in medium screening have clear spacing between tow bars is 0.01m

No. Of openings :-
\[
\text{Net width} = \frac{\text{clear spacing between two bars}}{0.01} = 10.4 \text{Say 11}
\]

(No. Of Bars will be less than no. of opening by 1)

We have
- No. Of Bars = 11 – 1 = 10
- No. Of Ends bara = 2
- Total number of bars is medium screening is 12

Total Gross width = (no. of opening) × (Clear spacing of bars) + (no. of bars) × (diameter of bars)
\[
= 11 \times 0.01 + 12 \times 0.01
= 0.23 \text{ m}
\]

These screens are generally kept inclined at 60° to the direction of flow, so as increase the opening area and reduce the flow velocity.
Assume inclination of screen is 60°

Now, the Length of screen is
\[
= \frac{2}{\sqrt{3}} \times \text{depth}
= \frac{2}{\sqrt{3}} \times 0.5
= 0.729 \text{m}
\]

Assume the velocity is 0.8 m/sec the head loss is obtained from
\[
h_l = 0.0729 \left(V^2 - v^2 \right)
\]

V= velocity of flow through the screen
\[
v= \text{velocity of flow before screen}
\]

3.1.2 Grit Chamber:
Grit chamber are the sedimentation basins place in front of the waste water treatment plant to remove the inorganic particles (specific gravity about 2.65) such as sand, gravel, grit, egg shell, bones and other non-putresirable materials that may clog channel or damage pumps due to abrasion and to prevent their accumulation in sludge digester.

Actually, grit will also include smaller mineral particles that may settle as well as non-putrescible organic matter, such as rags, coffee ground, vegetables cutting etc. Generally, grit channel is design to remove all particles of higher specific gravity of 2.65 or so, with a nominal diameter of 0.20 mm and more, having settling velocity of about 21 mm/s (at 10°C) some grit removal channels are designed to remove particles having 0.15 mm size having settling velocity of about 15 mm/s (at 10°C)

1. **Settling velocity:**

 It is given by stokes law for laminar flow

 \[
 Vs = \frac{g \left(\text{Density of particle} - \text{density of water} \right) \cdot d \cdot \mu}{18 \cdot \mu}
 \]

 \[
 Vs = \frac{g \left(Gs - 1 \right) \cdot d^2}{18 \cdot \mu}
 \]

 Where,
 - \(g = \) gravitational acceleration
 - \(Gs = \) specific gravity
 - \(d = \) diameter of particle
 - \(V = \) settling velocity

2. **Surface overflow rate:**

 \[
 SOR = \frac{Q}{AS}
 \]

 Where,
 - \(Q = \) flow rate
 - \(AS = \) surface area

3. **Detection period may vary from 45 to 90 sec**

4. **Number of units :-**
 - For manually cleaned grit chamber at least tow unit shall be provided.
 - For mechanically cleaned units one additional manually cleaned unit

5. **Free board of 150 × 300 mm shall be provided**

6. **Length can be calculated**

 \[
 L = Vh \times t
 \]

 Where,
 - \(V = \) horizontal velocity
 - \(h = \) detention time

© 2021, www.IJARIIT.com All Rights Reserved
7) Depth can be calculated as
\[D = \frac{Vs \times t}{A} \]
Where,
Vs = settling velocity
t = detention time

8) Bottom slope can be provided

Design :
\[Q = 3689.95 \text{ m}^3/\text{day} = 0.042 \text{ m}^3/\text{sec} \]
Maximum flow = 2.5 \times 0.042 = 0.105 m^3/sec
Keeping the horizontal velocity as 0.2 m/sec (<0.227 m/sec) & detection time period as one minute

Length of the grit chamber
\[= velocity \times detention time \]
\[= 0.2 \times 60 \]
\[= 12.0 \text{ m} \]

Volume of the grit chamber
\[= discharge \times detention time \]
\[= 0.105 \times 60 \]
\[= 6.3 \text{ m}^3 \]

Cross section area of flow
\[A = \frac{Volume}{length} \]
\[= \frac{6.3}{12} \]
\[= 0.525 \text{ m}^2 \]

Provide length of chamber is 1.0 m
Hence depth is 0.525
Provide 25% additional length to accommodate inlet & outlet zone

Hence,
The length of grit chamber
\[= 12 + 1.25 \]
\[= 15.0 \text{ m} \]
Provide 0.3 m free board and 0.25m grit accumulation zone depth
Hence, the total depth
\[= 0.525 + 0.3 + 0.25 \]
\[= 1.07 \text{ m} \]

The dimension of grit chamber is length \times width \times depth = 15m \times 1m \times 1.07m

Table: Dimension of Sedimentation Basin

<table>
<thead>
<tr>
<th>Description</th>
<th>Range</th>
<th>Typical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular</td>
<td>3-5</td>
<td>3.5</td>
</tr>
<tr>
<td>Depth (m)</td>
<td>15-90</td>
<td>25-40</td>
</tr>
<tr>
<td>Width (m)</td>
<td>3-24</td>
<td>6-10</td>
</tr>
<tr>
<td>Circular</td>
<td>4-60</td>
<td>12-14</td>
</tr>
<tr>
<td>Diameter (m)</td>
<td>3-5</td>
<td>4.5</td>
</tr>
<tr>
<td>Bottom slope(mm)</td>
<td>60-160</td>
<td>80</td>
</tr>
</tbody>
</table>

3.1.3 Primary Sedimentation Tank (Rectangular): Sedimentation or settling tank that received raw wastewater prior to biological treatment are called as primary sedimentation tank. The objective of primary sedimentation tank is to remove readily settleable organic solids and floating material and thus reduce the suspended solid content efficiently designed and operated primary sedimentation tank should remove from 50 to 70% the suspended solids and 25 to 40% of the BOD

Recommended dimensions of sedimentation basin (as per CPHEEO):

1) Rectangular tank:
 - Tank dimension L:B (3 to 5:1)
 - Length = 30m common & maximum 100m
 - Width = 6 to 10 m
2) Circular tank:
 - Diameter not greater than 60 m, generally 20 to 40 m
 - Depth = 2.5 to 5.0 m (3 m)
3) Bottom slope:

Rectangular: 1% towards inlet and 8% of circular

The Discharge for the primary sedimentation tank
\[Q = 3689.95 \text{ m}^3/\text{day} = 153.74 \text{ m}^3/hr \]
Assume Detention period = 2 hr (1.65 – 4 hr, CPHEEO manually)

\[T_d = \frac{\text{Volume}}{Q} \]

Volume = \(T_d \times Q = 2 \times 153.74 \]
\[V = 307.49 \text{ m}^3 \]

Assume, depth = 2.5 m (2.4 – 4 m CPHEEO manually)

\[Volume = Area \times Depth \]
\[Area = \frac{Volume}{Depth} = \frac{307.49}{2.5} \]
\[A = 122.99 \text{ m}^2 \text{ say } 123 \text{ m}^2 \]

Assume,
\[\frac{L}{B} = 2 \]
(1.5 – 7.5)
\[Area = L \times B \]
\[= 2B \times B \]
\[= 2B^2 \]
\[123 = 2B^2 \]
\[B = 7.84 \text{ Say } 8 \text{ m} \]
\[L = 2B \]
\[L = 2 \times 8 \]
\[L = 16 \text{ m} \]

Provide 3 m for inlet and outlet arrangement
Total length = 16 + 3 = 19 m

Provide free board of 0.5 m and sludge depth 1m
Overall depth = 2.5 + 1.5 = 4m
Provide rectangular sedimentation tank of \(L \times B \times H = 19 \text{ m} \times 8 \text{ m} \times 4 \text{ m} \)

Note- design of secondary sedimentation tank as same as primary sedimentation tank

3.1.4 Trickling Filter: A trickling filter is a part of waste water treatment system, in consists of a fixed bed rocks, coke, gravel, slag, polyurethane foam, sphagnum, peat moss, ceramic or plastic media over which wastewater flows downward and causes a layer of microbial, covering the bed of media application of trickling filter.

Trickling filter are used to remove organic matter from wastewater. The Trickling filter is an aerobic treatment system that utilized micro-organisms attached to a medium to remove
organic matter from wastewater. In contrasts, system in which microorganisms are sustained in a liquid are know as suspended growth process

3.1.4.1 Design consideration:

1. **Hydraulic loading**: \((\text{m}^3/\text{m}^2/\text{day}) \)

\[
\text{flow of water} = \frac{Q}{A}
\]

2. **organic loading**: \((\text{kg}/\text{m}^2/\text{day}) \)

\[
\text{BOD loading} = \frac{Q \times BOD}{A}
\]

3. **Recirculation factor**:

\[
F = \frac{1 + R}{1 + 0.1R^2}
\]

4. **Filter efficiency**:

\[
E = \frac{100}{1 + 0.44 \left(\frac{\sqrt{w}}{\sqrt{V \times f}} \right)}
\]

Design value:

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Low rate trickling filters</th>
<th>High rate trickling filter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydraulic loading (\text{M}^3/\text{m}^2/\text{day})</td>
<td>1-4</td>
<td>30-70</td>
</tr>
<tr>
<td>Organic loading (\text{BOD5}) (\text{Kg/m}^3/\text{day})</td>
<td>0.08-0.32</td>
<td>0.5 – 1.0</td>
</tr>
<tr>
<td>Depth</td>
<td>1.8 – 3.0</td>
<td>1.3-1.8</td>
</tr>
<tr>
<td>Recirculation ratio</td>
<td>None</td>
<td>0.5 – 3.0</td>
</tr>
</tbody>
</table>

For design of high rate trickling filter we assume,

- BOD of raw sewage \(S_1 \) = 240mg/l
- BOD removal during primary treatment = 30%
- Organic loading rate = 0.8 Kg/m³/day
- Hydraulic loading rate= 15 M³/m³/day
- Recirculation ratio = 2

We know,

- \(Q = 3689.95 \text{ m}^3/\text{day} \)
- Influent BOD to trickling filter is 70% of BOD of raw sewages

\[
\text{Influent BOD} = (100 - 30) \% \ of \ S_1 = \frac{100}{100} \times 240 = 0.168 \text{ m}^3/\text{mg} l
\]

\[
S_0 = 168 \text{ m}^3/\text{mg} l
\]

\[
\text{LOR} = 0.8 \text{ Kg/m}^3/\text{day}
\]

HLR: 15 M³/m³/day

Now, calculate volume

\[
LOR = \frac{Q \times S_0}{V}
\]

\[
0.8 = \frac{3689.95 \times 0.168}{V}
\]

\[
V = 774.88 \text{ m}^3
\]

Now calculate total flow,

\[
Q = 3689.95 \text{ m}^3/\text{day}
\]

\[
r = \frac{QR}{Q}, \quad QR = r \times Q
\]

\[
QR = 2 \times Q
\]

Total flow \(Q + QR = Q + 2Q = 3Q \)

\[
Q = 3 \times 3689.95
\]

\[
Qt = 11069.85 \text{ m}^3/\text{day}
\]

Now calculate area of trickling filter using hydraulic loading

\[
HLR = \frac{Qt}{A}
\]

\[
15 = \frac{11069.85}{A}
\]

\[
A = 737.99 \text{m}^2
\]

Assume the circular trickling filter and calculate the diameter of trickling filter

\[
A = \frac{\pi}{4} \times D^2
\]

\[
737.99 = \frac{\pi}{4} \times D^2
\]

\[
D = 30.65 \text{ say 30m}
\]

So, depth is

\[
\text{Volume} = \frac{\text{Area} \times \text{depth}}{	ext{depth} = \frac{\text{Volume}}{\text{Area}}}
\]

\[
= 774.88
\]

\[
= 737.99
\]

\[
\text{depth} = 1.04m
\]

The depth of the trickling filter is 1.04m and the diameter is 30mm

Now, calculate the efficiency of trickling filter,

\[
n = \frac{100}{1 + 0.44 \left(\frac{Q \times S_0}{\sqrt{V \times f}} \right)}
\]

Where,

\[
Q= \text{flow rate}
\]

\[
S_0= \text{influent BOD}
\]

\[
V= \text{volume}
\]

\[
F= \text{recirculation factor}
\]

For recirculation factor,

\[
F = \frac{1 + R}{(1 + 0.1R^2)^2}
\]

\[
F = \frac{1 + 2}{(1 + 0.1 \times 2)^2}
\]

\[
F = 2.08
\]

\[
n = \frac{100}{1 + 0.4432 \left(\frac{3689.95 \times 0.168}{774.88 \times 2.08} \right)}
\]

\[
n = 78.43\%
\]

3.1.5 Oxidation Pond:

Oxidation ponds, also called lagoons or stabilization ponds, are large, shallow ponds designed to treat wastewater through the interaction of sunlight, bacteria, and algae. Algae grow using energy from the sun and carbon dioxide and inorganic compounds released by bacteria in water. During the process of photosynthesis, the algae release oxygen needed by aerobic bacteria. Mechanical aerators are sometimes installed to supply yet more oxygen, thereby reducing the required size of the pond. Sludge deposits in the pond must eventually be removed by dredging. Algae remaining in the pond effluent can be removed by filtration or by a combination of chemical treatment and settling.

3.1.5.1 Design consideration:

1. **Areal organic loading**:
 - It is expressed as kg BOD5/ha.day
 - Depend upon latitude
 - Correction of elevation : OLR (organic loading rate) is modified by dividing a factor of \((1+0.003H)\)
 - Sky clearance factor: For every 10% decrease in the sky clearance factor below 75% the pond area my increased by \(3\%\)

Location of township is 21N (ghoprad, nagpur maharashtra)

Assume,
Now calculate the volume and depth of oxidation pond

\[\text{volume} = T_d \times Q = 12.58 \times 3689.95 \text{ m}^3 \]

\[\text{volume} = T_d \times Q = 247.77 \times 29700 \text{ m}^3 \]

\[\text{Depth} = \frac{\text{volume}}{\text{Area}} = 46419.57 \text{ m} \]

\[\text{depth} = \frac{\text{volume}}{\text{Area}} = 1.56 \text{ m} \]

We have area is 2.97 or 29700 m²

Assume, L/B = 2 (L/B ia not greater than 3)

\[\text{Area} = L \times B \]

\[= 2B \times B = 2B^2 \]

\[= 29700 = 2B^2 \]

\[B = 121.86 \text{ say } 122m \]

\[L = 2 \times B \]

\[L = 2 \times 122m \]

\[L = 244m \]

The dimension of the oxidation pond is LxBxD is 2.44 m×122 m×1.26 m

After the wastewater treated in oxidation pond the water released to the river.

<table>
<thead>
<tr>
<th>Sr. No</th>
<th>Latitude</th>
<th>BOD5 loading (kg/ha. Day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8</td>
<td>325</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>300</td>
</tr>
<tr>
<td>3</td>
<td>16</td>
<td>275</td>
</tr>
<tr>
<td>4</td>
<td>20</td>
<td>250</td>
</tr>
<tr>
<td>5</td>
<td>24</td>
<td>220</td>
</tr>
<tr>
<td>6</td>
<td>28</td>
<td>200</td>
</tr>
<tr>
<td>7</td>
<td>32</td>
<td>175</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>120</td>
</tr>
</tbody>
</table>

4. CONCLUSION
The waste water treatment plant is a treated a waste water of domestic area. The huge percentage of waste water is coming from Township for treated. And the final result is waster water is treated and flow through to the river. The design parameters of waste water treatment plant is use properly to design the unit of waste waster treatment plant

5. REFERENCES
[1] CPHEEO Manually 1999
[8] https://youtu.be/1K5HuGxv8s4
[12] https://youtu.be/PyA9w_vGyHM