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 ABSTRACT 
 

In this work, we introduce the topological data analysis layer 

that estimates persistent homology on attributes extracted 

from convolutional layers for image classification. This 

method shows that topological information can be utilized to 

upgrade network performance. This work focuses on 

applying persistent images on the deep convolutional layer to 

learn topological features and also exploring the behavior of 

topological data analysis on various convolutional neural 

network architectures like sequential architecture and 

extended width architecture. Based on our empirical analysis, 

we exhibit the significance of topological data analysis on 

convolutional neural networks by attaining reliable scores on 

classification tasks on benchmark datasets.   
 

Keywords― Convolutional Neural Networks (CNN), 

Topological Data Analysis (TDA), Persistent Homology, 

Persistent Representations 

1. INTRODUCTION 
Convolutional neural networks are one of the prominent deep 

learning algorithms utilized in the process of image 

recognition, object detection, edge detection, image 

segmentation, and neural style transfer and retrieval relevant 

tasks. The potential of convolutional neural networks lies in 

their capability to automatically learn information from the 

data utilizing its numerous feature extraction levels.  The 

structure of CNN comprises a mixture of convolutional layers, 

subsampling layers, and fully connected layers [1]. It is a feed-

forward system, where each level utilizes an assortment of 

filters and computes collective mutations. Convolution 

behavior aids in the derivation of different features from the 

input image. The yield of convolutional tasks is then passed to 

indiscriminate activation functions. The return of the non-

linear processing unit is succeeded by subsampling, which 

alters the features to geometrical distortions invariant. The 

uniqueness of CNN’s is because of automated feature 

extraction, sparse connectivity, multi-tasking, and shared 

weights. To improve the correctness of the CNN model at 

decreased training steps, the notion of topological data analysis 

has been applied.  

 

TDA is a mathematical topology and computational geometry 

method [2], which gives algorithmic and statistical procedures 

to examine and elucidate tangled geometric and topological 

formation of features that are portrayed as point clouds in 

common metric or Euclidean spaces. TDA can be applied to 

any sort of data and it’s vigorous to noise. TDA offers a 

strategy titled persistent homology which empowers us to 

pursue topological changes of data at multiple scales. At 

various scales, topological features like holes, loops, spheres 

and connected components appear and vanish. These 

topological aspects have a lifespan which is addressed by their 

birth and death time. Their life expectancy is portrayed by the 

barcode or persistence diagram. The persistence diagram 

involves an unordered cluster of intervals on the real line, 

where a long bar demonstrates the presence of an attribute that 

lives over an enormous range of values and its real, and short 

bars are the commotions. These are mentioned as topological 

signatures. However, the persistence diagrams are regular 

descriptors of topological data inspection, its metric space is 

not Hilbert i.e. the space of persistence illustrations intensely 

needs structure, diverse persistence graphs may have a 

distinctive group of points, and different rudimentary functions 

are not transparent, like summation and vector multiplication. 

It makes it bother on expert systems mechanism. To defeat 

these restrictions, this task presents a futuristic TDA layer for 

deep convolutional neural networks that takes a topological 
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representation i.e. persistence image fused with convolutional 

feature maps to perform classification tasks. To exhibit the 

versatility of this strategy, we have constructed distinct CNN 

models alongside the TDA layer to accomplish the 

classification endeavor on the benchmark dataset. 

 

The paper is structured in the accompanying order; Section 2 

addresses several works on the enactment of topological data 

analysis to artificial intelligence models. The proposed TDA 

layer has been explored in Section 3 and the experimental 

probe of TDA combined various CNN architectures are 

displayed in Section 4. The Section 5 examines our future work 

and also concludes our work. 

 
2. RELATED WORKS 
To conquer the limitation of utilizing topological data analysis 

on the learning process, various methodologies have been 

proposed. Mathieu et al proposed a method depending on heat 

kernel signature and extended persistence hypothesis to learn 

vectors from persistent graphs in [3]. Rickard et al introduced a 

distinguishable topology layer in [4] that assesses persistent 

homology dependent on level set and edge-based filtrations. 

The topological data analysis has been applied to the 

parameters of CNN to illuminate topological structures that are 

coupled with the network's capacity to generalize to concealed 

data and in addition to rise networks performance by Gunnar et 

al in [5]. To illustrate the stability of topological data analysis, 

Alexander et al [6] examined topological features on numerous 

computer vision issues like image classification, shape 

recognition, and video summarization relevant to biomedical 

images. Alternatively, Christoph et al presented a methodology 

that permits us to input uncommonly organized topological 

signatures to deep neural networks and acquire an ideal 

portrayal during training in [7]. 

 

In the line of research, William et al [8] use algebraic topology 

as the measure for data intricacy, and dependent on it, the 

appropriate architecture that best fits on unrevealed data is 

resolved. Topological data analysis was carried out on the 

interior states of the neural nets to recognize it and also to 

construct generalized neural network structures by Gunnar et al 

in [9]. Gregory et al had tackled the mysteries behind the work 

of non-linear activation capabilities and also the role of deep 

layered neural networks in solving complex issues utilizing 

topological data investigation in [10]. A syndicate multichannel 

topological CNN is created by Zixuan et al in [11], where 

feature-specific persistent homology has been utilized to 

examine protein-ligand unbreakable bonds and protein 

steadiness commute upon transformation. Another application 

of topological data analysis in classifying biological repeated 

measurements data is invented by Henri et al in [12]. To 

analyze the commitment of topological information to the 

performance of convolutional neural networks, we performed 

our trials on a few CNN architectures utilizing the standard 

benchmark datasets. 

 

3. TDA LAYER 
In this part, we present our technique for embedding 

topological data analysis on convolutional neural networks 

with the proposed TDA layer. Our architectures comprise 

convolutional layers, non-linear activation functions, and 

topological data analysis (TDA) layers, subsampling layers, 

and fully connected layers. In TDA layers, the topological 

depiction of convolution feature maps is computed and passed 

on to consequent layers on architecture for further processing. 

The persistent image acquired by performing the persistent 

homology concept on convolutional feature maps is considered 

a topological feature map. 

 

3.1 Concepts behind TDA layers 

Homology [2,3&5] is a procedure from algebraic topology 

offering an amazing asset to standardize and deal with the idea 

of geometrical attributes of a simplicial complex or a 

topological extent in a mathematical manner. For some extent 

K, the K-dimensional holes are addressed by a vector span Hk, 

whose element is naturally the quantity of such self-sufficient 

features. For instance, the 0-dimensional homology set H0 

addresses the coupled components of the aggregation, the 1-

dimensional homology category H1 depicts the 1-dimensional 

spirals, and the 2-dimensional homology group H2 addresses 

the 2-dimensional holes, etc. Homology in dimension K is 

characterized as underneath. 

 

𝐻𝑘(𝑥) =  ker 𝜕𝑘 𝑖𝑚 𝜕𝑘+1⁄  

 

Persistent homology is an incredible asset to analyze and 

inscribe proficiently multiscale topological characteristics of 

encapsulated groups of topological and simplicial spaces. It 

inscribes the advancement of the homology gatherings of the 

clustered complexes across the dimensions. It figures out how 

homology changes over an expanding succession of 

complexes, also described as filtration on X. Each section in 

the filtration also makes or demolishes homology when it 

emerges. The full information about how homology is born and 

expires over the filtration can be addressed as a multi-set of 

sets (b. d) where b is the birth constant of a homology class, 

and d is the death constant of that class (d = ∞ it is as yet 

remains in X). This multiset of sets for homology in aspect K is 

noted as the k-dimensional persistence outline of the process, 

𝑃𝐷𝑘(𝑥0) = {(𝑏𝑖 , 𝑑𝑖)}𝑖∈𝑇𝑘
 or the K-dimensional barcode of X0. 

As persistence graphs are a crowd of points in R2, there are 

numerous concepts of distances among cost functions on 

diagrams that rely upon the points and representations. The 

loss functions comprise of three parameters, 
 

ϵ(p, q, i0; PDk) =  ∑|di − bi|
p(

di + bi

2
)q

|Tk|

i=i0

 

 

A valuable portrayal of this homological information is a 

persistence diagram (PD). Persistence diagrams are changed 

over into limited dimensional vector depictions called 

persistence images. The persistence image is acquired by 

spinning by -pi/4, compacting Gaussian functions on all 

representation points normally weighted by a parameter 

function like the squared distance to the slanted, and adding 

every one of these Gaussians. This gives a 2D function that is 

pixelated into an image. Let B be a PD in birth-death 

coordinates. Let 𝑇:  𝑅2 →  𝑅2 be the linear operator T(x, y) = 

(x, y-x), and let T (B) be the altered multiset in birth-

persistence coordinates, where each point (x, y) € B 

corresponds to a point (x, y-x) € T(B).  Let ∅𝑢:  𝑅2 → 𝑅 alone a 

differentiable likelihood distribution with mean 𝑢 = (𝑢𝑥 , 𝑢𝑦) ∈

 𝑅2.  the standardized symmetric Gaussian ∅𝑢 = 𝑔𝑢 with mean 

u and variance 𝜎2 characterized as 
 

𝑔𝑢(𝑥, 𝑦) =  
1

2𝜋𝜎2
𝑒

−|(𝑥−𝑢𝑥)2+(𝑦−𝑢𝑦)
2

| 2𝜎2⁄
 

 

These concepts are applied on convolutional layer feature maps 

to induce geometric and topological signatures, which are then 

fused with their corresponding activation maps and fed into the 

next convolutional layer on hierarchy for learning.  
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Figure 1: Sequential CNN Model 

 

4. EXPERIMENTATION AND ANALYSIS  
To exemplify the robustness of the preferred approach, we 

present an assessment with two distinct categories of CNN 

architectures: 1) Sequential (Fig.1) and 2) Expanded Width 

architectures (Fig.2 &3). In both cases, the learning task is 

classification. The model architectures can be found in figures 

1 & 2. We performed the study utilizing the standard MNIST 

repository, which comprises 70,000 samples of scripted digits 

(zero to nine) that have been size-standardized and focused in a 

square grid of pixels. Each picture has a resolution of 28 × 28 

in which each pixel represents grey scale intensities spanning 

from 0 (black) to 1 (white). The objective data comprises of 

one-hot binary vectors of size 10, comparing to the digit 

classification categories zero through nine. The GUDHI library 

has been utilized to compute higher-dimensional geometry of 

shapes that exists in data.  
 

 
Figure-2 Holistically CNN Model 
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Figure 1: Single Inputs on Different Networks Model 

 

 
Figure 2: Accuracy of Sequential CNN model 
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Figure 5: Accuracy of TDA-Sequential CNN Model 

 

 
Figure 6: Accuracy of Holistically CNN Model 

 

 
Figure 7: Accuracy of TDA-Holistically CNN Model 

 

 
 

Figure 8: Accuracy of Single Input on Different Networks  CNN Model 
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Figure 9: Accuracy of TDA-Single Input on Different Networks CNN Model 

 
Table 1: Results on MNIST Digits Dataset 

Model Name Accuracy 

Sequential CNN 0.86 

TDA-Sequential CNN 0.95 

Holistically CNN 0.97 

TDA-Holistically CNN 0.97 

SIDN-CNN 0.97 

TDA-SIDN CNN 0.79 

 

5. CONCLUSION 
In this work, we have developed a topological data analysis 

integrated convolutional neural networks method to solve a 

classification problem. The trained model TDA-Sequential 

CNN model yielded high accuracy on the MNIST dataset when 

compared with its Sequential CNN counterpart. To understand 

the capability and behavior of topological features integrated 

with various CNN architectures, two commonly used CNN 

categories were examined. From our experimentation, it is 

found that the combination of topological features and 

convolutional features performs well on conventional 

sequential models, but it is not suitable for wide-width CNN 

architectures. And also the topological attributes could be 

utilized to determine which CNN architecture is suitable for 

specific data. In the future, we consider developing large-scale 

topological data analysis integrated learning methods for 

training the object contour detector on the BIPED dataset and 

applying the generated proposals for object instance 

segmentation. 
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