
International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 2365

ISSN: 2454-132X

Impact Factor: 6.078
(Volume 7, Issue 3 - V7I3-2193)

Available online at: https://www.ijariit.com

University chatbot with database integration using RASA
Harith L. K.

harithlk316@gmail.com

R. V. College of Engineering,

Bengaluru, Karnataka

K. Vadhi Raja

vrpk07@gmail.com

R. V. College of Engineering,

Bengaluru, Karnataka

Dr. G. S. Mamatha

mamathags@rvce.edu.in

R. V. College of Engineering,

Bengaluru, Karnataka

ABSTRACT

Chatbot is an Artificial Intelligence (AI) software that simulates

and processes human conversations as if the humans were

having a real conversation with another human. They are used

in various business applications to help address human queries

and assist them with important details. RASA is an open-source

machine learning framework for building chatbots. RASA

leverages Natural Language Understanding (NLU) to break

down user messages into intent and entities which help form an

appropriate response for the user’s messages. The RASA

conversational assistant has several components that help

predict the responses and also tune the model to get better

results from the model. In this paper, this paper will provide the

design of a chatbot that handles basic queries of a particular

university that could be used on the university website. This

paper also explores how individual components of the RASA

pipeline help curate the response for the users.

Keywords: RASA, Natural Language Understanding (NLU),

Chatbot,

1. INTRODUCTION
Automation of tasks has been growing rapidly due to an increase

in technological resources and tools. One such area is the

automation of customer support. Many of the companies now

have automated responsive chatbots to provide extended

customer service. The main intention of using chatbots is to

provide support throughout the day 24/7. They are highly

accessible, customizable, and provide instant responses to the

user. They can be customized to perform actions based on the

inputs given to it [1]. In this paper, Rasa is discussed, an open-

source conversational framework to build a university chatbot.

Rasa consists of various tools like Rasa NLU, Rasa Core which

are open-source python libraries to provide distributive

functionality handling systematically. Natural language

understanding (NLU) is the most important aspect of a

conversational framework. Rasa NLU enables the application to

tokenize and define the user input and respond accordingly [2].

A university chatbot is an application that can provide an

immediate response to Students/Parents and even the Staff

wherever necessary. Queries like Admission details, Fee

structure, College/Department details, Placement details are

handled by the bot and respective responses will be given to the

user.

2. RASA
Rasa is an open-source framework based on machine learning to

automate textual and voice-based assistants. RASA has two core

modules, RASA NLU and RASA Core [3]. RASA NLU is

RASA’s Natural Language Understanding module which uses

machine learning and Natural Language Processing (NLP) to

extract the important details which are contained within a

message such as intents and entities [4]. Intents refer to the goal

or the purpose with which the user sends the message to a

chatbot [5]. Entities are the useful data that are present within

the user’s message which decides how the dialog flow should

move further. These entities add value to the user’s goal of

communication with the chatbot [5]. RASA allows us to handle

intents and entities more simply. The intents are mentioned in a

yaml file, where all the user intents along with their example

messages would satisfy the respective intent. The entities can

also be provided along with the intent examples by placing them

within square brackets and mentioning the name of the intent

inside brackets after the entity. Ex: [Computer

Science](department). Here, Computer Science is the entity

belonging to an entity named department.

Fig 1. RASA Architecture

The architecture above shows a simple workflow of how the

data entered by the user will go through a number of different

stages before responding. The interpreter block is RASA’s

Natural Language Understanding unit which breaks down the

input into a set of intents and entities which help the dialog flow

module or the core module to predict an appropriate message for

the response [6]. Tracker helps us record all the data and store it

for the purpose of using it in further stages of the workflow.

Tracker helps us to maintain the state of the conversation [6].

http://www.ijariit.com/
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V7I3-2193
mailto:harithlk316@gmail.com
mailto:vrpk07@gmail.com
mailto:mamathags@rvce.edu.in

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 2366

Policies help identify the next best action to be taken [6] based

on the input provided by the intent and entities obtained from

the interpreter module and the state information from the

tracker. The respective action triggered will give out a response

to the user to the message he or she sent. The action triggered is

logged into the tracker [6].

3. SYSTEM DESIGN
This section describes the proposed system along with some of

the features offered by the chatbot. RASA’s NLU and Core

modules are leveraged to offer the features for the proposed

system. The connection of RASA chatbot customized version of

the chatroom frontend application which provides with the User

Interface for our conversational assistant.

Figure 2. Architecture for the university chatbot application

A high-level overview of the University Chatbot application is

shown in Figure 2. As you can see, there is a clear distinction

between the front end and the RASA server. The RASA server

serves up the bot responses based on the user’s messages using

the RASA API endpoint. The message transfer happens in JSON

format. The users are presented with a front-end application

where the users can post their messages, ask queries, and have

conversations with the assistant. These messages sent to this

front-end application is passed on to the RASA NLU module,

where the intents and entities of the messages are captured. The

intents and entities are then used by the core module of RASA

to obtain a response for the respective message. There are files

written using YAML to set examples for the intents used and

also to capture the entities. YAML files are used to write the

responses which are sent back to the user based on the core’s

prediction. The NLU module predicts the intents and entities

with a certain confidence level. The intent with the highest

confidence level is used by the core module to predict the

response. RASA has the concept of custom actions which

provides us the ability to write custom code which can be

leveraged to give out responses based on queries to a database

or APIs.

3.1 Database Connection

The architecture of the chat application shows the connection

with database by the RASA Core module in Figure 2. In the

given system RASA server is connected with a SQLite database.

This database contains details regarding the university which

will help to answer queries made by the users.

Figure 3. Entity-Relationship Diagram for the University Database

The Entity-Relationship diagram for the SQLite database is as

shown in Figure 3. The database has several entities. The

College entity refers to the college database which identifies the

college. The departments entity will hold all the details relating

to a department, which will help to answer queries related to the

department such as about department, departments list, and

others. The Faculty Entity will hold the data related to faculties

and will help to fetch the faculty information when queried.

Placements Entity helps to obtain placement information for

individual departments. Clubs’ entity which is directly related

to the college entity will help to fetch the details about all the

clubs present at the college. The database connection has to be

made from the actions module in RASA which helps to build

our custom actions in RASA to serve out responses for the

users.

Our system uses the database to query for details such as

department details, placements of individual departments,

getting details of clubs at the college, and other details. The core

module runs the custom code written for querying the database

for the above-mentioned details to fetch the appropriate

responses for our chatbot to respond to the user.

3.2 NLU Pipeline

RASA NLU is modularized into pipelines [3]. The pipelines the

processing stages which the user messages will go through

before they are classified as to be of a specific intent having one

or more entities which in turn helps to predict the bot message.

The components specified in the pipeline are executed one after

the other in which the output of one component of the pipeline

is used by the subsequent components in the pipeline. In the

proposed system, two different pipelines were tried out, pre-

trained embedding and supervised embeddings with DIET

classifier and compare the performance of the chatbot for both

cases. The pre-trained embeddings come with pre-trained word

embeddings [7], which helps to obtain similarities between the

words which have not been used in the training data. This model

helps to match with other words related to the domain which is

helpful in case the training examples provided are less in

number. The supervised embedding pipeline used in the

proposed system uses the DIET (Dual Intent and Entity

Transformer) classifier which is used for simultaneous

classification of intent and identification of entities present in

the user’s message. The three most common and important steps

which any pipeline does are the tokenization of the words in the

message, feature extraction from the tokens, and classification

of the intents and entities present in the message. Tokenization

involves separating the words in the message which are then

submitted to the featurizer to obtain features of the message

based on individual words present in the message. Feature

extraction uses the words from the tokenizer and then calculates

meaningful numbers based on the significance of the words in

the message. These numbers are then passed to the classifier,

which helps to classify the intents and also in identifying the

entities. The classification of intents and identification of the

entities then help serve the purpose of selecting a response by

the Core module of RASA in assistance with the Database.

3.3 DIET Classifier

Dual Intent and Entity Transformer, also shortly known as DIET

classifier, is a state-of-the-art classifier which is lightweight and

is designed with a multitask transformer architecture for NLU

[8]. It handles both the functionalities i.e., Intent classification

and Entity recognition both together. It also provides the ability

to plug and play various models which are embedded and

already pre-trained with BERT, ConveRT, GloVe etc.

http://www.ijariit.com/

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 2367

• It is built as a modular architecture which makes it highly

feasible to be incorporated into a software development

workflow.

• It is in-line with the existing large scale pre-trained models

in terms of performance and accuracy.

• Contains wide functionalities to perform complex

predictions.

DIET classification uses a sequence model which considers the

order of the word, thus improving the performance [8].

Figure 4: Illustration showing the working of DIET classifier.

4. IMPLEMENTATION
The primary step in developing the required application is to

have a trained Rasa conversational AI model which can then be

integrated with the required application, this might include a

website, a simple UI to get a clear interface to communicate with

the chatbot. In order to train the required model, a Rasa project

needs to be initialised using “rasa init” command. The NLU

component of the rasa tool takes care of identifying the message

or query input by the user.

After the project is initialized, Rasa creates distributive scripts

and folders which handle the functionalities like:

• nlu.yml: Define the intents and the message or queries that the

intents can be associated with.

• rules.yml: Define the default rules and actions to be performed

in case of the said rules.

• stories.yml: Define the series of steps and intents to be

performed for a particular “story”.

• Actions.py: A python script defined to connect to the database

and retrieve the relevant information of a particular intent. The

functions to retrieve the required information can be defined

for each intent can be defined in the script. Rephrasing the user

input to match the intents can also be done to make

information retrieval and intent classification unchallenging.

• Test_strories.yml: Contains the test file with intents and

actions to check whether the chatbot is performing as it should.

• Config.yml: Define the feature filters such as

WhiteSpaceTokenizer – used to read input as tokens without

whitespaces, tabs and newlines, RegexFeaturizer – To create a

list of regular expressions which are in the data during the

training of the model.

• Credentials.yml: Define the socket IO connection for each

session, and also specify the port on which the rasa server runs.

• Domain.yml: Define the responses for each intent specified in

the NLU, these responses should be given based on the intent

detected by the intent classifier. The functions defined in the

python script are also called here in the form of “actions”.

• Endpoints.yml: To define the end point URL for the frontend

or any other API-based application to request and connect to

the rasa server model.

5. RESULTS AND EVALUATION
This section provides results obtained from the University

chatbot. The results include intent classification confidence for

two different pipelines and the confusion matrix which describes

how well the model predicted the respective intents. This will

help to evaluate the model’s performance and compare with the

pipelines.

5.1 Intent Classification for Pre-Trained Embeddings

Pipeline

Figure 5. Intent classification for Pretrained Embedding

Pipeline

Figure 5 shows the confusion matrix for the intent classification

using Pretrained embeddings pipeline. It can be seen that several

intents have been mis predicted. The intents related to university

queries have mostly been predicted correctly.

Figure 6 shows the intent classification confidence distribution

which shows the confidence levels at which different entities

have been predicted. The left side of Figure 5 shows the

confidence levels at which the intents were correctly predicted.

The pretrained embeddings model has many intents predicted

correctly with lesser confidence as shown in the Figure 5. This

shows that the model has high susceptibility to predict the wrong

intent. The Figure 5 also shows some red lines on the right side

which represents the confidence levels at which the wrong

intents were predicted. The pipeline predicts the wrong intents

with less confidence, which is a good optimization for the

model.

Figure 6: Intent Prediction Confidence Distribution for

Pretrained Embeddings Pipeline

http://www.ijariit.com/

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page| 2368

5.2 Intent Classification for Supervised Embeddings

Pipeline with Diet Classifier

The intent confusion matrix shown in the Figure 6 shows better

results for predicting the respective intent by the model when

ran on a test sample data. Even though the training data is less,

good results can be seen for intent prediction. The Figure 7.

shows the confidence levels for the intent prediction. As it can

be seen that most of the values on the left side fall on the top part

of the graph, which shows that the model predicts the correct

intents with high confidence and the red line on the right side

indicates that the model predicted only a single intent wrong

with moderate confidence. This shows that the DIET classifier

with the Supervised Embedding Pipeline [9] performs better

than the Pretrained Embeddings Pipeline for the training and

testing samples available.

Figure 7: Intent Confusion Matrix for Supervised

Embedding Pipeline

Figure 8: Intent Prediction Confidence Distribution for

Supervised Embedding Pipeline

6. CONCLUSION
The university query bot classifies the intent based on the input

given using the DIET classifier. The python script connects the

application to the database and enables communication between

the application and the database. The main functionality

required for an appropriate and accurate response in intent

classification, which is a major part of Natural Language

Understanding (NLU) and the result obtained from this is the

final prediction or interpretation of the input query. We could

see that the DIET Classifier (Dual Intent and Entity

Transformer) with Supervised Embedding Pipeline [9] showed

better results than the Pretrained Embedding Pipeline. The

reason for this is because in DIET classification, the

transformation architecture handles the Intent recognition

functionality and the recognition of the respective entity

together. The DIET classifier total loss is trained and determined

by the total for entity loss, mask loss and intent loss.

Optimization of the algorithms has been and always will be a

work for the future. The efficiency of the algorithms determines

the extensive use of it. In Artificial Intelligence, there is always

a scope for improvisation by performing certain trade-offs and

finding the point of utmost efficiency. DIET Classification

might be the state-of-the-art classifier for Rasa, but it has its

limitations. Due to increase in demand of such automated

conversation chatbots, there is an increased requirement to

develop an algorithm that can handle large scale data processing

very efficiently. Thus, it can be stated that there is much scope

for such development since the AI market [10] is always on

demand by the institutions to automate their management style

for enquiries.

7. REFERENCES
[1]. Andrew Rafla and Casey Kennington. 2019. “Incrementalizing

rasa’s open-source natural language understanding pipeline.” arXiv

preprint arXiv:1907.05403.

[2]. A. Abdellatif, K. Badran, D. Costa and E. Shihab, "A Comparison
of Natural Language Understanding Platforms for Chatbots in

Software Engineering," in IEEE Transactions on Software

Engineering, doi: 10.1109/TSE.2021.3078384.

[3]. Mohit Jain, Ramachandra Kota, Pratyush Kumar, and Shwetak N.
Patel. 2018. “Convey: Exploring the Use of a Context View for

Chatbots.” In Proceedings of the 2018 CHI Conference on Human

Factors in Computing Systems (CHI '18). Association for

Computing Machinery, New York, NY, USA, Paper 468, 1–6.
DOI: https://doi.org/10.1145/3173574.3174042

[4]. R. Sharma, "An analytical study and review of open source chatbot

framework rasa", International Journal of Engineering Research

and, vol. V9, no. 06, 2020.

[5]. A. Stoica, T. Kadar, C. Lemnaru, R. Potolea and M. Dînşoreanu,

"The Impact of Data Challenges on Intent Detection and Slot

Filling for the Home Assistant Scenario," 2019 IEEE 15th

International Conference on Intelligent Computer Communication
and Processing (ICCP), 2019, pp. 41-47, doi:

10.1109/ICCP48234.2019.8959642.

[6]. W. Astuti, D. P. I. Putri, A. P. Wibawa, Y. Salim, Purnawansyah

and A. Ghosh, "Predicting Frequently Asked Questions (FAQs) on
the COVID-19 Chatbot using the DIET Classifier," 2021 3rd East

Indonesia Conference on Computer and Information Technology

(EIConCIT), 2021, pp. 25-29, doi:

10.1109/EIConCIT50028.2021.9431913.

[7]. Vladimir Vlasov, Johannes E. M. Mosig, and Alan Nichol

“Dialogue Transformers” 2019, arXiv Cornell University,

Submitted on 1 Oct 2019 ,last revised 1 May 2020.
[8]. Tanja Bunk, Daksh Varshneya, Vladimir Vlasov, Alan Nichol

“DIET: Lightweight Language Understanding for Dialogue

Systems” Arxiv: archive 2004.09936

[9]. Mihir Kale, Aditya Siddhant, Sreyashi Nag, Radhika Parik,
Matthias Grabmair & Anthony Tomasic “Supervised Contextual

Embeddings for Transfer Learning In Natural Language

Processing Tasks” Language Technologies Institute Carnegie

Mellon University Pittsburgh, PA 15213, USA
[10]. Yang Cheng, Hua Jiang “Customer–brand relationship in the era

of artificial intelligence: understanding the role of chatbot

marketing efforts”. Department of Communication, North Carolina

State University, Raleigh, North Carolina, USA - Journal of
Product & Brand Management © Emerald Publishing Limited

[ISSN 1061-0421] [DOI 10.1108/JPBM-05-2020-2907]

http://www.ijariit.com/

