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ABSTRACT 
 

Chatbot is an Artificial Intelligence (AI) software that simulates 

and processes human conversations as if the humans were 

having a real conversation with another human. They are used 

in various business applications to help address human queries 

and assist them with important details. RASA is an open-source 

machine learning framework for building chatbots. RASA 

leverages Natural Language Understanding (NLU) to break 

down user messages into intent and entities which help form an 

appropriate response for the user’s messages. The RASA 

conversational assistant has several components that help 

predict the responses and also tune the model to get better 

results from the model. In this paper, this paper will provide the 

design of a chatbot that handles basic queries of a particular 

university that could be used on the university website. This 

paper also explores how individual components of the RASA 

pipeline help curate the response for the users.  
 

Keywords: RASA, Natural Language Understanding (NLU), 

Chatbot,  

1. INTRODUCTION 
Automation of tasks has been growing rapidly due to an increase 

in technological resources and tools. One such area is the 

automation of customer support. Many of the companies now 

have automated responsive chatbots to provide extended 

customer service. The main intention of using chatbots is to 

provide support throughout the day 24/7. They are highly 

accessible, customizable, and provide instant responses to the 

user. They can be customized to perform actions based on the 

inputs given to it [1]. In this paper, Rasa is discussed, an open-

source conversational framework to build a university chatbot. 

Rasa consists of various tools like Rasa NLU, Rasa Core which 

are open-source python libraries to provide distributive 

functionality handling systematically. Natural language 

understanding (NLU) is the most important aspect of a 

conversational framework. Rasa NLU enables the application to 

tokenize and define the user input and respond accordingly [2]. 

A university chatbot is an application that can provide an 

immediate response to Students/Parents and even the Staff 

wherever necessary. Queries like Admission details, Fee 

structure, College/Department details, Placement details are 

handled by the bot and respective responses will be given to the 

user. 

 

2. RASA 
Rasa is an open-source framework based on machine learning to 

automate textual and voice-based assistants. RASA has two core 

modules, RASA NLU and RASA Core [3]. RASA NLU is 

RASA’s Natural Language Understanding module which uses 

machine learning and Natural Language Processing (NLP) to 

extract the important details which are contained within a 

message such as intents and entities [4]. Intents refer to the goal 

or the purpose with which the user sends the message to a 

chatbot [5]. Entities are the useful data that are present within 

the user’s message which decides how the dialog flow should 

move further. These entities add value to the user’s goal of 

communication with the chatbot [5]. RASA allows us to handle 

intents and entities more simply. The intents are mentioned in a 

yaml file, where all the user intents along with their example 

messages would satisfy the respective intent. The entities can 

also be provided along with the intent examples by placing them 

within square brackets and mentioning the name of the intent 

inside brackets after the entity. Ex: [Computer 

Science](department). Here, Computer Science is the entity 

belonging to an entity named department.  
 

 
Fig 1. RASA Architecture 

 

The architecture above shows a simple workflow of how the 

data entered by the user will go through a number of different 

stages before responding. The interpreter block is RASA’s 

Natural Language Understanding unit which breaks down the 

input into a set of intents and entities which help the dialog flow 

module or the core module to predict an appropriate message for 

the response [6]. Tracker helps us record all the data and store it 

for the purpose of using it in further stages of the workflow. 

Tracker helps us to maintain the state of the conversation [6]. 
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Policies help identify the next best action to be taken [6] based 

on the input provided by the intent and entities obtained from 

the interpreter module and the state information from the 

tracker. The respective action triggered will give out a response 

to the user to the message he or she sent. The action triggered is 

logged into the tracker [6]. 

 

3. SYSTEM DESIGN 
This section describes the proposed system along with some of 

the features offered by the chatbot. RASA’s NLU and Core 

modules are leveraged to offer the features for the proposed 

system. The connection of RASA chatbot customized version of 

the chatroom frontend application which provides with the User 

Interface for our conversational assistant.  

 
Figure 2. Architecture for the university chatbot application 

 

A high-level overview of the University Chatbot application is 

shown in Figure 2. As you can see, there is a clear distinction 

between the front end and the RASA server. The RASA server 

serves up the bot responses based on the user’s messages using 

the RASA API endpoint. The message transfer happens in JSON 

format. The users are presented with a front-end application 

where the users can post their messages, ask queries, and have 

conversations with the assistant. These messages sent to this 

front-end application is passed on to the RASA NLU module, 

where the intents and entities of the messages are captured. The 

intents and entities are then used by the core module of RASA 

to obtain a response for the respective message. There are files 

written using YAML to set examples for the intents used and 

also to capture the entities. YAML files are used to write the 

responses which are sent back to the user based on the core’s 

prediction. The NLU module predicts the intents and entities 

with a certain confidence level. The intent with the highest 

confidence level is used by the core module to predict the 

response. RASA has the concept of custom actions which 

provides us the ability to write custom code which can be 

leveraged to give out responses based on queries to a database 

or APIs.  

 

3.1 Database Connection 

The architecture of the chat application shows the connection 

with database by the RASA Core module in Figure 2. In the 

given system RASA server is connected with a SQLite database. 

This database contains details regarding the university which 

will help to answer queries made by the users. 
 

 
Figure 3. Entity-Relationship Diagram for the University Database 

The Entity-Relationship diagram for the SQLite database is as 

shown in Figure 3. The database has several entities. The 

College entity refers to the college database which identifies the 

college. The departments entity will hold all the details relating 

to a department, which will help to answer queries related to the 

department such as about department, departments list, and 

others. The Faculty Entity will hold the data related to faculties 

and will help to fetch the faculty information when queried. 

Placements Entity helps to obtain placement information for 

individual departments.  Clubs’ entity which is directly related 

to the college entity will help to fetch the details about all the 

clubs present at the college.  The database connection has to be 

made from the actions module in RASA which helps to build 

our custom actions in RASA to serve out responses for the 

users.  

 

Our system uses the database to query for details such as 

department details, placements of individual departments, 

getting details of clubs at the college, and other details. The core 

module runs the custom code written for querying the database 

for the above-mentioned details to fetch the appropriate 

responses for our chatbot to respond to the user. 

 

3.2 NLU Pipeline 

RASA NLU is modularized into pipelines [3]. The pipelines the 

processing stages which the user messages will go through 

before they are classified as to be of a specific intent having one 

or more entities which in turn helps to predict the bot message. 

The components specified in the pipeline are executed one after 

the other in which the output of one component of the pipeline 

is used by the subsequent components in the pipeline. In the 

proposed system, two different pipelines were tried out, pre-

trained embedding and supervised embeddings with DIET 

classifier and compare the performance of the chatbot for both 

cases.  The pre-trained embeddings come with pre-trained word 

embeddings [7], which helps to obtain similarities between the 

words which have not been used in the training data. This model 

helps to match with other words related to the domain which is 

helpful in case the training examples provided are less in 

number. The supervised embedding pipeline used in the 

proposed system uses the DIET (Dual Intent and Entity 

Transformer) classifier which is used for simultaneous 

classification of intent and identification of entities present in 

the user’s message. The three most common and important steps 

which any pipeline does are the tokenization of the words in the 

message, feature extraction from the tokens, and classification 

of the intents and entities present in the message. Tokenization 

involves separating the words in the message which are then 

submitted to the featurizer to obtain features of the message 

based on individual words present in the message. Feature 

extraction uses the words from the tokenizer and then calculates 

meaningful numbers based on the significance of the words in 

the message. These numbers are then passed to the classifier, 

which helps to classify the intents and also in identifying the 

entities. The classification of intents and identification of the 

entities then help serve the purpose of selecting a response by 

the Core module of RASA in assistance with the Database. 

 

3.3 DIET Classifier 

Dual Intent and Entity Transformer, also shortly known as DIET 

classifier, is a state-of-the-art classifier which is lightweight and 

is designed with a multitask transformer architecture for NLU 

[8]. It handles both the functionalities i.e., Intent classification 

and Entity recognition both together. It also provides the ability 

to plug and play various models which are embedded and 

already pre-trained with BERT, ConveRT, GloVe etc.  
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• It is built as a modular architecture which makes it highly 

feasible to be incorporated into a software development 

workflow.  

• It is in-line with the existing large scale pre-trained models 

in terms of performance and accuracy. 

• Contains wide functionalities to perform complex 

predictions. 

DIET classification uses a sequence model which considers the 

order of the word, thus improving the performance [8]. 

 
Figure 4: Illustration showing the working of DIET classifier. 

 

4. IMPLEMENTATION 
The primary step in developing the required application is to 

have a trained Rasa conversational AI model which can then be 

integrated with the required application, this might include a 

website, a simple UI to get a clear interface to communicate with 

the chatbot. In order to train the required model, a Rasa project 

needs to be initialised using “rasa init” command. The NLU 

component of the rasa tool takes care of identifying the message 

or query input by the user.  

 

After the project is initialized, Rasa creates distributive scripts 

and folders which handle the functionalities like: 

• nlu.yml: Define the intents and the message or queries that the 

intents can be associated with. 

• rules.yml: Define the default rules and actions to be performed 

in case of the said rules. 

• stories.yml: Define the series of steps and intents to be 

performed for a particular “story”. 

• Actions.py: A python script defined to connect to the database 

and retrieve the relevant information of a particular intent. The 

functions to retrieve the required information can be defined 

for each intent can be defined in the script. Rephrasing the user 

input to match the intents can also be done to make 

information retrieval and intent classification unchallenging. 

• Test_strories.yml: Contains the test file with intents and 

actions to check whether the chatbot is performing as it should. 

• Config.yml: Define the feature filters such as 

WhiteSpaceTokenizer – used to read input as tokens without 

whitespaces, tabs and newlines, RegexFeaturizer – To create a 

list of regular expressions which are in the data during the 

training of the model. 

• Credentials.yml: Define the socket IO connection for each 

session, and also specify the port on which the rasa server runs. 

• Domain.yml: Define the responses for each intent specified in 

the NLU, these responses should be given based on the intent 

detected by the intent classifier. The functions defined in the 

python script are also called here in the form of “actions”. 

• Endpoints.yml: To define the end point URL for the frontend 

or any other API-based application to request and connect to 

the rasa server model. 

 

5. RESULTS AND EVALUATION 
This section provides results obtained from the University 

chatbot. The results include intent classification confidence for 

two different pipelines and the confusion matrix which describes 

how well the model predicted the respective intents. This will 

help to evaluate the model’s performance and compare with the 

pipelines. 

 

5.1 Intent Classification for Pre-Trained Embeddings 

Pipeline 

 
Figure 5. Intent classification for Pretrained Embedding 

Pipeline 

 

Figure 5 shows the confusion matrix for the intent classification 

using Pretrained embeddings pipeline. It can be seen that several 

intents have been mis predicted. The intents related to university 

queries have mostly been predicted correctly. 

  

Figure 6 shows the intent classification confidence distribution 

which shows the confidence levels at which different entities 

have been predicted. The left side of Figure 5 shows the 

confidence levels at which the intents were correctly predicted. 

The pretrained embeddings model has many intents predicted 

correctly with lesser confidence as shown in the Figure 5. This 

shows that the model has high susceptibility to predict the wrong 

intent. The Figure 5 also shows some red lines on the right side 

which represents the confidence levels at which the wrong 

intents were predicted. The pipeline predicts the wrong intents 

with less confidence, which is a good optimization for the 

model. 

 
Figure 6: Intent Prediction Confidence Distribution for 

Pretrained Embeddings Pipeline 
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5.2 Intent Classification for Supervised Embeddings 

Pipeline with Diet Classifier 

The intent confusion matrix shown in the Figure 6 shows better 

results for predicting the respective intent by the model when 

ran on a test sample data. Even though the training data is less, 

good results can be seen for intent prediction. The Figure 7. 

shows the confidence levels for the intent prediction. As it can 

be seen that most of the values on the left side fall on the top part 

of the graph, which shows that the model predicts the correct 

intents with high confidence and the red line on the right side 

indicates that the model predicted only a single intent wrong 

with moderate confidence. This shows that the DIET classifier 

with the Supervised Embedding Pipeline [9] performs better 

than the Pretrained Embeddings Pipeline for the training and 

testing samples available. 

 

 
Figure 7: Intent Confusion Matrix for Supervised 

Embedding Pipeline 

 

 
Figure 8: Intent Prediction Confidence Distribution for 

Supervised Embedding Pipeline 

 

6. CONCLUSION 
The university query bot classifies the intent based on the input 

given using the DIET classifier. The python script connects the 

application to the database and enables communication between 

the application and the database. The main functionality 

required for an appropriate and accurate response in intent 

classification, which is a major part of Natural Language 

Understanding (NLU) and the result obtained from this is the 

final prediction or interpretation of the input query. We could 

see that the DIET Classifier (Dual Intent and Entity 

Transformer) with Supervised Embedding Pipeline [9] showed 

better results than the Pretrained Embedding Pipeline. The 

reason for this is because in DIET classification, the 

transformation architecture handles the Intent recognition 

functionality and the recognition of the respective entity 

together. The DIET classifier total loss is trained and determined 

by the total for entity loss, mask loss and intent loss. 

 

Optimization of the algorithms has been and always will be a 

work for the future. The efficiency of the algorithms determines 

the extensive use of it. In Artificial Intelligence, there is always 

a scope for improvisation by performing certain trade-offs and 

finding the point of utmost efficiency. DIET Classification 

might be the state-of-the-art classifier for Rasa, but it has its 

limitations. Due to increase in demand of such automated 

conversation chatbots, there is an increased requirement to 

develop an algorithm that can handle large scale data processing 

very efficiently. Thus, it can be stated that there is much scope 

for such development since the AI market [10] is always on 

demand by the institutions to automate their management style 

for enquiries. 
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