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ABSTRACT 
 

The Dynamic response of a single pile following leipholz’s rod has been solved. The analysis attempts to provide the solution of 

the pile if the model of the system is taken to have a non-self adjoint follower load under the influence of a heterogeneous 

winkler soil model. The method of laplace transform is used to deal with the non-conservative initial-boundary-value 

problems. In this paper, a close form solution has been developed to deal with the concave singularity function of the soil 

subgrade modulus if the admissible function for the pile is satisfied when upset by a time dependent lateral force. This 

research domain is still active as research engineers and mathematicians are engaged in developing a deeper understanding of 

dealing with the singularity. The result obtained is compared with those given by static (finite element) analysis. 

 

Keywords: Dynamic Analysis; Non-Conservative System; Follower Forces; Singularity Function; Heterogeneous Soil Profile; 

Green’s Function. 

 

1. INTRODUCTION  
The dynamic behaviour of a pile can be argued from the principle of generalized adjointness and exchanging of energy by 

different functional [1-3] due to the fact that piles are inherent to axial load from the superstructure. This approach has been seen 

to handle non-conservative systems and capable of dealing with the unique set(s) of admissible functions under tangential 

follower forces. The established variational principle in [1], this time by a definite linear functional provided for the initial and 

boundary conditions of the system is applied for a single pile stiffened by singularity brought into play by the nonlinear subgrade 

modulus as in figure 1.0. A simple analogy by Leipholz [4] developed the green function for the associated differential equation. 

This study aims at developing an approximate analytic solution capable of handling this inhomogeneous soil in a simpler manner. 

 

2. PROBLEM FORMULATION 
The problem may be simply expressed as the system below 

 

 ' ( ) '' ( , ) ( , )v

sDw q l x w k w w K x t cw P x t+ − + + = − =   1a 

 ( ,0) ( ,0) 0;w x w x= =   1b 

 ( ) ( ) ( ) ( ) ( )0, ' 0, , 0;    , '' ,'' ;'''w ww t w t l t D l t Kw l t= = = =   1c 

 
where w is the deflection perpendicular to the middle-surface of the pile, where D is the flexural stiffness or linear self-

adjointness, sk is the nonhomogeneous soil stiffness on the pile, q is a kind of linear non-selfadjoint load, μ is the mass density per 

unit surface, K is the distributed perturbing force and c is the damping coefficient. 

 

 ( )2' ( ) ''v

sDw q l x w k w P+ − + − =   2a 
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Fig. 1: Pile Foundation 

 

Assuming that the variable is separable in the manner  

 ( ) ( ), iwtw x t w x e=   2b 

by Laplace transformation 

 ( ) ( )
0 0

, ,         ,st stw e w x t dt P e P x t dt

 

− −= =    3 

 ( ) ( )2'''v sDw q l x w k s w P+ − + − =   4 

The series expansion becomes 

 ( ) ( ) ( ) ( ) ( ) ( ), ,       ,i i i i

i i

s x A s W x P s x B s W xw = =    5 

Using (5) in (2) 

 ( ) ( )  ( )2'''vi i i s i i i

i i

A DW q l x W k s W BW x+ − + − =    6 

By considering (2) and (4) 

   ( ) ( )2 2( )i i i i i

i i

A s W x BW x + =    7 

 
2 2/ ( )i i iA B s = +   8 

From (4) 

 ( ) ( ) ( )
0

,

l

i iB s P s x W x dx=    9 

 ( ) ( ) ( )
2 2

0

1
,

( )

l

i i

i

A s P s x W x dx
s 

=
+    10 

The solution becomes 

 ( )
( )

( ) ( )
2 2

0

, ,
( )

l
i

i

i i

W x
w s x P s W d

s
  

 
=

+
    11 

By inversion, the Laplace transform the solution becomes 

 ( ) ( )
( ) ( )

( )
0 0

, , sin  

t l
i i

i

i i i

W W x
w x t P t d d


     


= −    12 

 ( )
( ) ( )

( ), , , sin
i i

i

i i

W W x
G x t t


   


= −   13 

Equation (13) is the unsymmetric green’s function of the problem. The control response of the pile due to damping is 
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 ( ) ( ) ( ) ( )
0 0

, , , , , ,  

t l

w x t G x t K cw d d       = −     14 

2.1 Eigenfrequency 

From equation (1), ( )iW x   is chosen in terms of the eigenfunctions of the self-adjoint auxiliary problem or follower load 

problem given below 

 ( ) ( )2' '' 0i i s i

v

iDW q l x W k W+ − + − =   15a 

 ( ) ( ) ( ) ( )' '' ''0, 0, , , 0;i i i iW t W t W l t W l t= = = =   15b 

To attempt the problem, an admissible function for the vibrational response of the pile under subjective follower load must be 

chosen for the pile to satisfy the above boundary conditions, following the variational principle [1] 

 ( ) ( ) ( )'''' '' 2 ''

0

l

mn m m m s i m n

m

F a D q l x k l x dx     = + − + − −
     16 

If we consider a bilinear functional below 

 1 1 2 2iW a a = +   17a 

Where, 

 ( ) ( )1 2

3
1 cos ,         1 cos

2 2

x x
x and x

l l

 
 = − = −   17b 

The function ( )m x  and ( - )n l x  thus satisfy the boundary conditions and the expression for generalized adjointness, so that 

 ( )''' ''' '' '' ' ' 2 ' '

0 0 0 0

0

l l l l

mn m m n m n s m n i m n

m

F a D dx q l x dx K dx dx        
 

= + − + − = 
 

       18 

Take, 

 ( )''' ''' '' '' ' ' 2 ' '

0 0 0 0

l l l l

mn m n m n s m n i m nf D dx q l x dx K dx dx        = + − + −      19 

and solving the characteristic equation below to obtain the vibration features 

 det 0mnf =   20 

3. NUMERICAL EXAMPLE 
Consider a system as in [5, 6] having, 

9 6 2 319 ,  200 10 508 10 ,  200 50  /sl m D Nm G x kN m−= =    = +  

3 2

max22.2 10 ,  174 / ,  and   ,   26 /s sA m kg m K AG and q kN m q−=  = = =   

maxq is a control parameter of stability for the auxiliary problem, for which the eigenvalues must remain real [7]. 

Equation (18) reduces for m,n ∈{1,2} to  

 
11 12 1

21 22 2

0

0

F F

F F





     
=    
    

  

By applying conditions, the eigenvalues ( )
2

/ secrad   are obtained as 

 
2 2

1 281.212,  887.57 = =   

one obtains the coordinate functions as 

 ( )1

3
0.99485 1 cos 0.10138 1 cos

2 2

x x
W x

l l

    
= −  − −  −   

   
  

 ( )2

3
0.89989 1 cos 0.43612 1 cos

2 2

x x
W x

l l

    
= −  − +  −   

   
  

consider a lateral disturbance at the top of the pile, such that 
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 ( )
( )0 ,       0

,
0,                              0

K x l sin t t T
K x t

T t

 −   
= 

 
  

given 0 5078 /19 2.6726 / ,  0.3sec,  2 /  / secK kN m T T rad= = =  =  

Substituting parameters in equation (12) becomes 

( )
( ) ( ) ( )

( )0

0 0

,  sin

l t
i i

i

i i

K l W W x
w x t d sin t t d

  
   



−
=  −   

 ( )

( )0
1 2 1 22

2

3
1 cos 1 cos

2 2

, 1
                                                si    n s     

1

in i

i

i i i i

i

i

i

K x x
a a a a

l l

w x t
t t

 











 

     
+  − + −     

      
=  

 
  − 

  

− 




 

  

By introducing a control system at the pile head as in [7, 8], displacement is reduced as 

 ( ) ( ) ( ) ( )
0 0

, , , , ,  

t l
w

x t w x t G x t c l dw d     



= − −

   

 ( ) ( ) ( ) ( )2

0 0

, , , , 2  ,

t l

ix t G x t i w l dw d w x t      + − =   

 ( ) ( ) ( ) ( )
1

, 1 2 cos 1 ,i i i i

i

w x t W l W x t w x t  

−

 
= +  −  
 

   

 

 3. RESULT AND DISCUSSION 
A computer-aided (MATLAB) procedure is applied. The maximum displacement of the pile is 0.1568 m as seen in Table 1.0, 

which is more than twice the static result of 0.06206 m and 0.0622 m in [5, 6] respectively. Pile foundations can experience high 

natural frequencies and displacement, hence amplitude. The result emphasizes the importance of dynamic analysis to foundation 

design problems. 

 

 
Fig. 2: Uncontrolled and Controlled (damped) displacement 

 

Table-1: Uncontrolled and controlled (damped) displacement 

Time (secs)    

0.02 5.9995e-04 5.9770e-04 5.7816e-04 

0.04 4.6178e-03 4.5546e-03 4.0549e-03 

0.06 1.4611e-02 1.4225e-02 1.1491e-02 

0.18 1.5001e-01 1.4579e-01 1.1636e-01 
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0.2 1.5681e-01 1.5289e-01 1.2482e-01 

0.22 1.5264e-01 1.4837e-01 1.1857e-01 

0.24 1.3776e-01 1.3269e-01 9.9671e-02 

0.28 8.3009e-02 7.7894e-02 5.0105e-02 

0.3 4.8488e-02 4.5072e-02 2.7584e-02 

 

4. CONCLUSION 
Soil-pile system under heterogeneous soil mass as well as dynamic load is investigated. The Green's function of the system makes 

the solution applicable to any kind of dynamic load as well as the shape function. Static finite element results compared showed 

the uniqueness of the approach. The results obtained can help improve developed dimensionless parameters in appropriate ranges 

for other complex approaches. 
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