
International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1999

ISSN: 2454-132X
Impact Factor: 6.078

(Volume 7, Issue 3 - V7I3-2052)
Available online at: https://www.ijariit.com

A survey on docker container and its use cases
Abha Anand B.

abhaanandb.is17@rvce.edu.in

RV College of Engineering, Bengaluru, Karnataka

Darunya B. C.

darunyabc.is17@rvce.edu.in

RV College of Engineering, Bengaluru, Karnataka

Anisha B. S.

anishabs@rvce.edu.in

RV College of Engineering, Bengaluru, Karnataka

S. G. Raghavendra Prasad

raghavendrap@rvce.edu.in

RV College of Engineering, Bengaluru, Karnataka

ABSTRACT

 Docker is an open platform for rapidly building, delivering,

and executing a variety of applications. It allows for faster

software delivery by separating applications from

infrastructure. Docker techniques encourage rapid shipping,

testing, and deployment of code anywhere, reducing the time

between code development and production deployment. It

assists both developers and system administrators by letting

developers write code without having to worry about the system

on which it will eventually run. It also can minimize the

number of systems and provide operations workers more

flexibility. The principles of Docker containers are discussed

in this paper and recent research on the subject. The document

also contains significant use cases, as well as the pros and

challenges of using it.

Keywords: Docker, Container, Virtual Machine, Docker

Image, Docker Use Case, Docker Techniques, Open Platform

1. INTRODUCTION
Before Docker containers, huge corporations like JPMorgan

Chase, ThoughtWorks, Walmart, Target, and that relied on

technology employed servers and added many of them, resulting

in over-allocation, to manage the growing number of requests

from customers. The disadvantage of over-allocating servers

was that it was incredibly expensive, and if the servers did not

scale effectively, the business would perish After a few years

have passed, VMware developed the concept of virtualization,

which allowed multiple operating systems to run on the same

host, essentially allowing any application to run in isolation on

the same server and infrastructure, giving the impression of

running an entirely separate computer on the same computer,

which was a game-changer for many industries. Virtualization

came with a lot of benefits, but it was also highly expensive. To

begin with, there are numerous kernels for each guest operating

system that will run on the infrastructure; also, resources must

be allotted to each guest operating system that is introduced to

the infrastructure.

Furthermore, virtualization is costly because, despite the

absence of actual hardware, virtual hardware consumes

resources, including the guest operating system space and RAM

allocation required for this operating system. Moving forward

with current technology known as Containerization, which is

defined as a sort of operating system (OS) virtualization in

which applications are executed in separated user areas while

sharing the same operating system. Container-based

virtualization, such as Docker, can be used instead of virtual

machines for faster functionality because starting and shutting

down a container is significantly faster. [13]Asas a

containerization platform, Dockers encapsulate all of an

application's dependencies in a Docker Container, ensuring that

the app runs smoothly in any environment. Docker allows for

much denser server consolidation than VMs and to meet the first

goal each flexibility to share additional usable RAM amongst

instances. [9] It facilitates Rapid Deployment; it is fast,

lightweight because it does not boot a separate OS per VM,

making it quick to start/stop; it requires less disc space because

common layers are shared across images; incremental

deployments of new app versions are smaller and thus faster than

VMs, and it shares a kernel across containers and thus uses less

memory. Docker files can be used to configure any computer

instantly, making it portable. Dockers without a hypervisor have

a significant benefit because they don't require a separate kernel.

Theycentralized uses the same resources as the host OS. They

take advantage of namespaces and control groups to more

efficiently utilize these resources.

I. 2. LITERATURE SURVEY
The paper titled “Workload-aware Resource Management

for Energy Efficient Heterogeneous Docker Containers” [5]

The proposed technology demonstrates how energy usage can

be lowered effectively. Workload-aware Energy Efficient

Container (WEEC) brokering system is proposed to align with

energy spent by running container applications across various

cloud servers. Essentially, the system divides input requests into

several server racks based on the containers' resource use

patterns. The WEEC brokering system is divided into four sub-

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V7I3-2052
mailto:abhaanandb.is17@rvce.edu.in
mailto:darunyabc.is17@rvce.edu.in
mailto:anishabs@rvce.edu.in
mailto:raghavendrap@rvce.edu.in

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |2000

components1) The Table Manager for Power Consumption Per

Application (PPA) is in charge of assessing the initial energy

efficiency consumed by the heterogeneous server in

containers.2) EWMA (Exponential Weighted Moving Average)

forecasts workload for future input requests. 3) DRS (Dynamic

Right-Sizing) aids in the management of active servers.4) In

Docker containers, the Request Allocation Manager oversees the

assignment of input requests to each specified server. The work

establishes a benchmark by assessing the power and

performance of multiple heterogeneous Docker containers with

benchmark programs and Yocto-Watt power monitoring

devices.

 The paper titled “Model-Driven Management of Docker

Containers” [3] focuses on docker container administration,

particularly where users encounter low-level system concerns,

and illustrates how modeling Docker containers aids in the

deployment and administration of Docker containers in a long-

term manner. Although the Docker system offers more benefits

than cloud computing platforms such as Azure and Amazon, the

Docker containers suffer from synchronization issues between

deployed and intended containers. focuses on docker container

administration, particularly where users encounter low-level

system concerns, and illustrates how modeling Docker

containers aids in the deployment and administration of Docker

containers in a long-term manner. Although the Docker system

offers more benefits than cloud computing platforms such as

Azure and Amazon, the Docker containers suffer from

synchronization issues between deployed and intended

containers. The connector establishes a link between the Docker

model and the Execution environment, providing tools to

efficiently run the Docker model by creating particular artifacts

in response to changes in the Execution environment. This paper

introduced a model-driven method to verification and

synchronization, and future research will focus on atomic

modifications in managed container architecture.

 The paper titled “Evaluation of Docker as Edge Computing

Platform” [2] explains how to deal with issues including high

latency, network bottlenecks, and network congestion. Edge

computing will be able to lower application response time for a

better user experience by transitioning from a centralized to a

decentralized model. Docker, a container-based technology

platform with more advantages than VM-based Edge

computing, is used to allow Edge computing. This article

focuses on the two most important requirements for EC: 1)

Deployment and Termination, which defines the platform that

makes it simple to manage to install and configure services for

low-end devices. 2) Resource and Service Management, which

enables consumers to use services even when resources are

depleted. . 3) Fault Tolerance, which is based on the user's high

availability and reliability. 4) Caching helps users to enjoy

higher speed by caching Docker images at the edge. One such

example is the use of the Docker idea on Hadoop Streaming,

which reduces setup time and configuration issues. Overall,

several places may be improved, but it still offers flexibility and

outstanding performance.

The paper titled “OpenStack and Docker: building a high-

performance IaaS platform for interactive social media

applications” [1] discusses the Nova-Docker plugin, which

allows for the quick and effective provisioning of computer

resources that can be used as a Hypervisor to manage the

expansion of application users. This is made possible via

OpenStack IaaS, which allows cloud computing data centers to

be controlled. Three key roles are present in the OpenStack

standard architecture: Nova is in charge of computing, whereas

Cinder is in charge of storage. Neutron is in charge of all

networking resources across many data centers. NUBOMEDIA

is another approach that uses the cloud to enable (PaaS)

interactive social media. Kurento Media Server (KMS), a

WebRTC media server that offers interactive communications,

is one of the main technologies used. Using Docker containers,

OpenBaton maintains the lifecycle of media server capabilities.

OpenShift Origin is activated to host apps that use media server

capabilities. Docker containers are preferred by developers and

administrators over kernel-based virtual machines due to their

fast boot time, direct access to containers, and the fact that they

can be run on any hardware that supports Linux. Docker

containers are small and light, which reduces the amount of

bandwidth required for deployment [8].

The paper titled “Docker container-based analytics at IoT

edge” [4] deals with internet-connected devices that use sensors

and generate a large amount of data. Compute and process the

data becomes a difficult effort. As a remedy, this paper focuses

on how to use Docker, a lightweight virtualization technology,

to facilitate application deployment at the IoT end. The research

primarily displays the use case for a video surveillance feed

developed in the United Kingdom touses analyze and detect

impending incidents using Deep learning. The above use case's

implementation mostly entails components such as the

Raspberry Pi 3, which serves as a gateway and collects the video

feed from the CCTV. The stream is analyzed using many deep

learning frameworks, and the MQTT client is used to alert

cloud-based services about the presence of threads in the frames

using Docker Swarm. This method also serves as a standard for

achieving efficient high-resolution frame processing. When

contrasted to bare metal deployment, this study reveals that deep

learning may be combined with Docker containers on single-

based machines, resulting in low CPU processing overhead.

II. 3. KEY DOCKER USE CASES [10]
A. Configuration Made Simple - Without the overhead of a

virtual machine, Docker lets every platform with its

configuration to run on top of any infrastructure. Docker

allows you to embed configuration files in code, pass over

env variables for multiple environments, and deploy it. As a

result, a single docker image can be utilized in several

contexts. This separates the application's infrastructure

requirements from the application's requirements.

B. Management of the CodePipeline- The code pipeline

management is greatly aided by the simplification of

configuration. There are many different contexts that code

must pass through on its way from the developer's machine

to production. Along the route, each of these may have small

variations. The simplicity of configuration considerably aids

code pipeline management. On its trip from the developer's

machine to production, code must transit through several

distinct environments. Each of these may vary somewhat

along the way.

C. Docker for Development Productivity - We primarily need

to achieve two primary goals in the development

environment. We want the development environment to be

as near to production as feasible, and we also want it to be

quick enough for interactive use. Each service must run on

its virtual machine (VM) to meet the first goal, just like the

production application does. Because of Docker's low

overhead, a few dozen services can easily operate within

separate containers in a development environment with

limited RAM. The second requirement is to have an active

development environment for interactive use; Docker makes

this possible by making the application code accessible to the

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |2001

container from the host OS via shared volumes. This has

advantages such as allowing the developer to alter the source

code from his preferred platform while also keeping track of

it.

D. Isolation of Apps - ought to Server consolidation for cost

reduction or a plan to break a monolithic application into

independent components are examples of application

isolation. Run two REST API servers, one for each Apache

installation. They all, however, use a slightly different

version of Apache and have distinct system requirements.

Running these API servers in separate containers is a simple

method to get around this problem.

E. Consolidating Servers - Docker's application isolation

capabilities allow you to consolidate many servers to save

money by avoiding the memory footprint of various OSes

and sharing unused memory between instances. In

comparison to VMs, Docker allows for significantly more

server consolidation.

F. Debugging Capabilities - Docker offers several tools that are

adept at working with the concept of containers. To name a

few of its features, one is the ability to checkpoint containers

and their versions, as well as the ability to distinguish

between two containers, allowing for quick application fixes.

G. Multi-tenancy- Docker can also be used in multi-tenant

systems to prevent major rewrites. For instance, creating

multi-tenancy for an IoT application quickly and easily.

Multi-tenant codebases are significantly more sophisticated,

strict, and difficult to manage. Re-architecting an application

takes time and money.

H. Rapid Deployment - In milliseconds, Docker containers can

be constructed and launched. Containers achieve this by not

booting up an operating system and instead of performing the

application process. Furthermore, the immutable nature of

Docker images assures you that things will continue to work

as they have in the past.

4. DOCKER USAGE
 A. WHEN TO USE?

Docker cannot be the best solution always; few cases are as

described below [10] -

• Teams of software developers - When developers are working

with diverse settings, Docker makes it easy to establish local

development environments that nearly mirror the production

environment without having to ssh into a remote box.

• App isolation - If it is necessary to run many applications on

one server, placing the components of each application in

distinct containers will help with dependency management.

• Getting acquainted with new technologies - Docker offers a

disposable and isolated environment that allows you to get

started with a new tool without having to spend a lot of effort

on setup and configuration. Several projects maintain docker

images of previously installed and configured programs.

5. CASE STUDY
In this case study, we'll explore how to use the TensorFlow

Object-detection API in a Docker container to handle real-time

(webcam) and video post-processing. With the help of OpenCV

with python3 multiprocessing and multithreading libraries.

Motivation - The first reason for this project was to just

investigate the real-time object recognition difficulty, which led

to the investigation of the Python multiprocessing module to

boost FPS. To take things a step further, the project will be

integrated into a Docker container to improve portability. The

biggest challenge here was dealing with video streams entering

and exiting the container.

Data Science with Docker: TensorFlow’s classic ssd mobilenet

v2 coco model can be used for speed performance. Simply copy

the model and the corresponding label map locally to keep the

option of utilizing a personal model later. In today’s world

where new AI or ML algorithms are released every week and

installing all that can cause OS crashes. Docker containers can

be used to avoid this. The process of creating an image is time-

consuming and takes several minutes. Then it's only a matter of

putting it to use.

Object Detection in Real-Time: First, apply object detection to

the webcam stream. Getting the webcam stream into the docker

container and recovering the output stream such that the X11

server could display it was the challenge.

Stream video into a Docker container:

• Devices are found in the /dev/ dir in Linux and can be

managed in the same way that files are. In most cases, the “0”

device is your laptop webcam. When launching the docker

image, utilize the device argument to transmit its stream into

the container.

• The best way to launch a Docker container on Windows is to

utilize Virtual Box.

Recover the video stream from the container.

• To render to the correct display, first expose your xhost so

that the container may read and write using the X11 UNIX

socket. Begin by granting docker access to the X server host's

rights.

• After that, reset the access controls to their default values and

generate the XSOCK and XAUTH environment variables.

The first is an X11 Unix socket, while the second is a properly

permission X authentication file.

• Finally, make sure the docker run command is up to date.

Then, using the DISPLAY environment variable to forward

the DISPLAY environment variable, mount a drive for the

X11 Unix socket, and use the XAUTHORITY environment

variable to link to the X authentication file, use the DISPLAY

environment variable to forward the DISPLAY environment

variable, mount a drive for the X11 Unix socket, and use the

XAUTHORITY environment variable to link to the X

authentication file.

Video Processing- To execute the object-detection API in real-

time with a webcam, use the threading and multiprocessing

python packages. A thread is used to read the camera stream. A

line of frames is arranged and processed by a group of

individuals (in which TensorFlow object-detection is running).

• Because all video frames must be read before workers can

apply object detection to the first ones in the input queue,

threading is not allowed for video processing. When the input

queue is full, frames that are read are lost. Perhaps many

workers and long queues will solve the problem (with a

prohibitive computational cost).

• If the input queue is not yet full, the next frame from the video

stream is read and added to it. If a frame is not received from

the input queue, nothing is done.

This case study demonstrates how to use Docker to build a real-

time object identification project using TensorFlow. Docker is

the most secure approach to test new data science tools and

package the solutions we provide to customers.

III.

IV. 6. REFERENCES
[1] Alin Calinciuc, Cristian Constantin Spoiala, Corneliu

Octavian Turcu, Constantin Filote, “OpenStack and

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |2002

Docker: building a high-performance IaaS platform for

interactive social media applications”, May 19-21, 2016.

[2] Bukhary Ikhwan Ismail, Ehsan Mostajeran Goortani, Mohd

Bazli Ab Karim, Wong Ming Tat, Sharipah Setapa, Jing,

Yuan Luke, Ong Hong Hoe, “Evaluation of Docker as Edge

Computing Platform”., 2015 Advanced Computing Lab

[3] Fawaz Paraiso, Stephanie Challita, Yahya Al-Dhuraibi,

Philippe Merle, “Model-DrivenManagement of Docker

Containers”., University of Lille & Inria Lille - Nord

Europe 2016.

[4] Pankaj Mendki, “Docker container-based analytics at IoT

edge”., Senior Principal Engineer, Member of R&D 2018.

[5] Dong-Ki Kang, Gyu-Beom Choi, Seong-Hwan Kim, II-Sun

Hwang, and Chan-Hyun Youn, “Workload-aware Resource

Management for Energy Efficient Heterogeneous Docker

Containers”., School of Electrical Engineering.

[6] Containers vs. VMs: What's the difference?

http://searchservervirtualization.techtarget.com/answer/

Containers-vs-VMs-Whats-the-difference.

[7] Understanding the architecture

https://docs.docker.com/engine/understanding-docker/.

[8] M. Raho, A. Spyridakis, M. Paolino, D. Raho, “KVM, Xen,

and Docker: a performance analysis for ARM-based NFV

and Cloud computing,” IEEE 3rd Workshop on Advances

in Information, Electronic and Electrical Engineering

(AIEEE), pp. 1–8, November 2015.

[9] R. R. Yadav, E. T. G. Sousa, and G. R. A. Callou, Docker

Containers Versus Virtual Machine-Based Virtualization:

Proceedings of IEMIS 2018.

[10] Deploy Docker Open Source, or Enterprise for High

Performing Systems, https://www.flux7.com/tech/

container-technology/docker/

[11] Chao Zheng and Douglas, Integrating Containers into

Workflows: A Case Study Using Makeflow, Work Queue,

and Docker.

[12] Control Desk existing solution: A containerization case

study with Docker https://developer.ibm.com/

technologies/ containers/articles/containerization-

docker-case-study.

[13] Preeth E N, F. J. P. Mulerickal, B. Paul and Y. Sastri,

"Evaluation of Docker containers based on hardware

utilization," 2015 International Conference on Control

Communication & Computing India (ICCC), 2015, pp. 697-

700, DOI: 10.1109/ICCC.2015.7432984.

file:///C:/omak/Downloads/www.IJARIIT.com
http://searchservervirtualization.techtarget.com/answer/
http://searchservervirtualization.techtarget.com/answer/
http://www.flux7.com/tech/

