
International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1753

ISSN: 2454-132X

Impact Factor: 6.078

(Volume 7, Issue 3 - V7I3-2048)

Available online at: https://www.ijariit.com

Masking private user information using Natural Language

Processing

Satwik Ram Kodandaram

satwikram29@gmail.com

Visvesvaraya Technological University,

Bangalore, Karnataka

Kushal Honnappa

kushal.h1999@gmail.com

Presidency University, Bangalore,

Karnataka

Kunal Soni

sonee069@gmail.com

Sanskar School, Jaipur,

Rajasthan

ABSTRACT

The Internet brings a lot of efficiency to our lives but we must

be aware that everyone exchanges a huge amount of data while

interacting with the internet. One of the most important leisure

activities one gets from the internet is to be able to socialize.

For example, social media has become part and the core of our

lives. With more than 2.3 billion active users, data privacy is an

issue of concern. The world of the internet has become full of

frauds hunting for personal information they leverage for their

immoral activities. So, coming up with an algorithm that could

secure data and process it such that no private data is involved,

and machines continue to be trained with greater data. This

could mean a dataset with data that is processed in a manner

to make it anonymous. If there is any private information, we

will mask that information with pseudo data. We use Named

Entity Recognition using Deep Learning for identifying and

masking personal information. In this paper, we will discuss

how we mask private data. This model will be a successful

technique to hide one’s personal information to achieve

complete data privacy.

Keywords: Named Entity Recognition, Deep Learning, Social

Media Platforms, Data privacy; Masking, Anonymity

1. INTRODUCTION
Social media user's concerns about their data privacy have spiked

in recent years. Incidents of data breaches have alarmed many

users to rethink their relationships to social media and the

security of their personal information. The dramatic story of

consulting agency Cambridge Analytica is an example that

exploited the private information of over 50 million Facebook

users to influence the 2016 American presidential election.

These issues are not acceptable with private user information.

According to the study conducted by the Pew trust, 80 percent of

social media user’s information being concerned about

businesses and advertisers accessing and using their social media

posts. These privacy issues have prompted the advocacy of

tighter regulations.

People will hesitate to share on social media as their data can be

used or leaked. Given today’s social media privacy issues and

concern, skilled cybersecurity professionals will play a vital role

in protecting the private user information and also the application

needs some automation which can hide some private data.

Fig. 1. An overview of privacy issues concerning the type of

social media data Tasks

Fig. 2. Where are People concerned about Online Privacy

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V7I3-2048
mailto:satwikram29@gmail.com
mailto:kushal.h1999@gmail.com
mailto:sonee069@gmail.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1754

1.1 Motivation

Data privacy has become a very important topic in our lives as

we are moving towards a more digitalized lifestyle. Crucial data

is being collected of people when they are in different mental

states through various digital devices installed in their homes or

workplace. This data is later used to predict their behavior and

maybe show advertisements accordingly. Even to train our

machines for machine learning, we need to give them data, the

data which is exposed to a larger group of people. But we are

trying to anonymize this, anonymize the collected data, so even

if it lands in the wrong hands, it holds no private information.

This data can then be used for various other purposes as it still

contains the gist of the whole idea.

1.2 Problem Statement

In the present scenario, we see a lot of people are facing mental

health issues. This is mainly because of the stress which they

face. This happens mainly due to the changed lifestyle of people.

So mental health has become a need for all of us that needs to be

addressed. Being physically fit is important, but at the same time,

being mentally fit is also equally important for all of us. We have

a lot of social media applications where users cannot share their

thoughts/views.

Fig. 3. Social Media usage growth

Below listed are some of the issues, why users cannot express

their thoughts/views:

✓ Most of the social media application is collecting private

information which can be hacked in the future and that

information could be leaked to hackers who can misuse the

data

✓ There is no complete user anonymity: Users will have to

share their email with the website and then are allowed to post

anonymously, which is not complete anonymity.

✓ Less accessibility: Most of these platforms are limited to the

English language only. Moreover, the support for people who

can’t type is missing at most sites, which makes these

platforms less accessible to the public.

✓ Targeted advertisements: Some platforms show targeted

advertisements based on what users share. This could be a

helpful feature, but this is something that is not beneficial

when dealing with mental health. Users feel they are being

tracked.

✓ Disclosure of private information on social media

applications: Although users are allowed to post

anonymously, sometimes, the data they share contains some

private information about other people. This can lead to

unexpected problems.

One of the solutions for the above-mentioned problems is an

application where there is complete user anonymity. Complete

user anonymity can be achieved by masking user’s private

information with pseudo data. We train Deep Learning

algorithms to identify these private user’s information and then

mask this private information with pseudo data. We use Named

Entity Recognition for identifying entities like Name, place, etc,

and then we will mask it. By this, we can able to hide private

user’s information and achieve complete user anonymity.

1.3 Objectives

Our objective is to solve the problem of data privacy. We plan

on removing the sensitive part from a given piece of data to

ensure that no private information like names and addresses are

present. All this data can be masked with pseudo data of the same

category like mobile numbers, names, and addresses. This will

keep the data legitimate as a whole and will also remove all the

sensitive information it collects. This could be one of the

methods to achieve complete data anonymity.

2. LITERATURE REVIEW
Currently, there are a lot of works that de-identify sensitive data

and mask it with different approaches. This can be extended to

different languages given a large dataset is available for the data:

2.1 Towards Personal Data Identification and

Anonymization Using Machine Learning Techniques [1]

In this paper [1], they have implemented using Supervised

Machine Learning Algorithms. If we use Deep Learning

algorithms we can fine tune it and extend our model for another

use cases using Transfer Learning concept but not possible using

Machine Learning algorithms.

2.2 De-identification in Natural Language Processing [2]

This paper [2] focuses on the usage of NLP for de-identification

and the importance it in different areas like medical, social

media, and CVs and describes what data need to be preserved

and removed.

2.3 An Introduction to NLP-based Textual Anonymisation

[3]

This work by Ben Medlock [3] talks about building a corpus and

the process of construction of the same. He critically evaluates

the system and talks about the issues he faced working on the

project. He also introduces the HMM-based tagger which could

be used as a corpus for the anonymous data.

3. IMPLEMENTATION
3.1 Deep Learning

Deep Learning is a subfield of Artificial Intelligence where it

replicates the human brain, human Neural System. Deep

Learning can be supervised, semi-supervised or unsupervised.

Deep Learning is capable of learning unsupervised from data that

is unstructured or unlabelled. Deep Learning algorithms enable

us to train machines and make machines to understand the data

and make decisions based on the correlation that exists between

the dataset, the same way how humans think to make decisions

with billion neurons connections. Deep Learning models are

very slow to train and require high computational power,

nowadays GPU or TPU have become a requirement to execute

the deep learning algorithms.

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1755

Although GPUs are very expensive yet without them training

deep neural networks to high performance is practically not

feasible. Today Deep Learning models are achieving the State of

the Art (SOTA) on challenging machine learning problems like

language translation from one language to another.

3.2 Natural Language Processing

A subfield of Artificial Intelligence is natural language

processing. NLP’s main goal is to understand and react to human

languages. Like other Machine learning algorithms, NLP

requires data to be trained. Working with text is very important

and it is very hard as it requires knowledge from a diverse

domain such as Linguistics, Statistics, Machine Learning, and

these days Deep Learning. When data are trained with NLP

models this algorithm tries to learn the language on its own with

the help of available data its learning process is similar to

humans learning natural languages. The advancement in NLP

technology helps the world to grow better and faster. NLP helps

humans in many aspects such as translation from one language

to another this reduces the human’s burden in knowing all the

languages. NLP help’s us to identify the tag of a given word, for

example, “Bengaluru” with “geo-loc” as a tag.

The chatbot is an application of NLP that can be used in

Customer support, Schedule a Meeting, Product Suggestions,

Order Pizza, and so on. Usage of chatbots in these areas not only

reduces workload but also saves customers waiting time. NLP

has the skill that reads, writes, and also speaks the given

languages the same as humans do. Combining all these

techniques an application can be built that can behave, interact

the same as humans without giving an impression of a machine.

3.3 Named Entity Recognition

Named Entity Recognition (NER) also known as Named Entity

Identification, entity chunking, and entity extraction is a subtask

of extraction of information from a corpus of sentences. It helps

us to identify named entities like a person, location, event,

organization, etc which are already pre-defined.

Fig. 4. Named Entity Recognition

Extracting main entities like a person, location, etc. helps us to

sort unstructured data and detect important information, which is

crucial if we have to deal with a large corpus of datasets. Named

Entity Recognition can be achieved using Deep Learning

classification where we give a set of training examples with

labels stating words with the corresponding entity as labels/class

to the model. On training Deep Neural Networks model with

probability function can able to predict the class which word

belongs to. There are a lot of applications on Named Entity

Recognition, in our application, we use mainly named entity

recognition to identify tags like a person, location, etc, and mask

this information to hide the private information of the users and

make our application complete user anonymous.

Fig. 5. Data in XML

Fig. 6. XML to CSV

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1756

3.4 Data Collection and Data Pre-processing

3.4.1 Dataset: We have collected data from The Groningen

Meaning Bank (GMB) which has a corpus of English texts with

deep semantic annotations. The dataset has more than 1.4 million

different tags, each tag representing different named entities with

their corresponding words. GMB is an adequately large corpus

with a lot of annotations. Unfortunately, GMB is not perfect. It

is not a gold standard corpus, meaning that it’s not completely

human-annotated and it’s not considered 100% correct. The

corpus is created by using already existed annotators and then

corrected by humans where needed. Here are the following

classes in the dataset -

✓ geo = Geographical Entity

✓ org = Organization

✓ per = Person

✓ gpe = Geopolitical Entity

✓ tim = Time indicator

✓ art = Artifact

✓ eve = Event

✓ nat = Natural Phenomenon

The attached dataset is in tab-separated format; the goal is to

create a good model to classify the Tag column. The dataset is

labeled using the IOB tagging system.

The dataset is in XML form. The XML tree has words with all

types mentioned.

We have converted XML form to a structured Data Frame, that

is to CSV format. We have parsed over the XML tree, extracted

the words and their corresponding tags, and converted them to

CSV files.

3.4.2 XML to CSV Conversion: Let XML file be the Input that

needs to be converted to CSV file. We will pass two empty lists

that are words and tags list which need to be parsed and

appended.

Let result be a list that consists of all the punctuations and other

symbols which need to be filtered out from the XML file.

Algorithm 1: XML to CSV

Input: XML file, words list, tags list, and result

Output: Converted Xml to CSV

1. Step 1: Parse the XLM tree

2. tree ← parse(file)

3. Step 2: Get root element from tree

4. root ← tree.getroot()

5. Step 3: Parsing throgh root and fetching words and tags

6. for each elem in root, do

for each subelem in elem.findall(tags), do

 if subelem attribute type == ‘tok’

 if subelem text in result

 do nothing, pass or

append(NaN)

 else

 words ← append(text)

 elif subelem attribute type == ‘namex’

 tags ← append(text)

 end if

7. end for

8. end for

9. Step 4: Create Data Frame from list

10. df = DataFrame({“words”: words, “tags”:tags})

11. Step 5: Convert Data Frame to CSV

12. df.to_csv(‘ner.csv’, index = ‘false’)

3.5 Tokenization

The process of splitting a sentence or a phrase into smaller units

that will be individual words, this split piece of words is called

as tokens. For example, let's take a sentence “Alex knows to

program.” on tokenizing we get [“Alex”, “knows”, “to”,

“program”, “.”] this tokenization [4] [5] is done by word

boundaries. With the help of this tokenizer, we will be able to

count the number of words in the text and count the frequently

occurring words. After tokenization is done, we encode the

tokens to numeric format.

3.6 Word Embeddings

Word Embeddings are created using neural networks with one

input layer, one hidden layer and, one output layer. Neural

Network doesn’t understand the raw text given as input. We

should encode it to the numbers using one-hot encoding or

tokenization. Word Embeddings are like a numerical

representation of a text. It is a type of word representation and

learned representation that has words with similar meanings to

have similar representation. Word Embeddings is a technique

where individual words are represented as real-valued vectors

which are predefined in the vector space of corpus. Each word is

mapped to one vector and the vector values are learned in a way

that resembles a neural network, which is more efficient while

predicting.

Example of Predicting the next word:

Student Opened their _____

The corpus has houses, books, lamps, and stamps.

Here the prediction should be: Student Opened their books.

Numerical Representation of Words houses books lamps stamps

<0.6, 0. 2, 0.1, 0.1>

How it is represented in Word Embeddings Each row of W

contains feature weights for the corresponding word in the

vocabulary.

X will be the input given to the model to predict.

Each dimension of X corresponds to a feature to the prefix

X = < -2.3, 0.9, 5.4 >

We do Matrix Multiplication of W weights and input X to obtain

W*X

W*X = < 1.8, -11.9, 12.9, -8.9 >

On top of W*X, a probability function is applied say softmax

function for multi labels.

Softmax Function:

Softmax(X) =
𝑒𝑥

∑ 𝑒𝑖𝑛
𝑖

 (1)

Softmax(W*X) = < 0.24, 0,73, 0.006, 0.002 >

W = 1.2 -0.3 0.9 books

 0.2 0.4 -2.2 houses

 8.9 -1.9 6.5 lamps

 4.5 2.2 -0.1 stamps

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1757

The highest Probability is 0.73 that is for books so the prediction

books.

Student Opened their books.

If the prediction is wrong, the Word Embeddings weights are

adjusted to predict the right word.

3.7 Recurrent Neural Networks

We, humans, understand a sentence by understanding each word

from it. A word is meaning changes concerning its past work.

Similarly, neural network needs past event’s information to

understand now happening or future accruing events. This

cannot be achieved by a conventional neural network.

This cannot be achieved by a conventional neural network. RNN

[6] does this work, it does it by a network which is looped, this

caries flow in information. An RNN is a duplicate of the same

neural network where each one of it passes information to the

other.

RNN works well when it needs information from a previous

word from the same sentence. But it fails when it needs

information from the previous sentence for example “Bangalore

is capital of Karnataka.”

In this sentence, Karnataka is predicted with the help of previous

information. But in the sentence “Raju is a fisherman, so he

catches fish daily” to predict the work fish there is a huge gap

with the word fisherman. Here RNN fails to handle these “long-

term dependencies”. So, in these cases we use LSTM.

Fig. 7. RNN with its loops

Fig. 8. RNN which shows that it is a combination of the

same neural network

3.7.1 Long Short-term Memories (LSTM): LSTM [7] is a kind

of RNN [6] that works well for long-term dependencies and also

can remember the information for a longer period. It is capable

of processing an entire sequence of data.

3.7.2 Difference between RNN and LSTM

Fig. 9. RNN

In traditional RNN fig 9, we have only one tanh layer but in

LSTM we have 4 interactions as shown in fig 10.

Fig. 10. LSTM

In fig 10 we can see there are many notations involved. Let’s

understand it by looking into fig 11.

Each line in fig 11 carries an entire vector from one node's output

to the inputs of others. The learned neural network layers are

represented by yellow boxes. The pink circle represents

pointwise operations such as vector addition.

Fig. 11. Working LSTM

Fig. 12. Cell State

The alternation in the information like removing or adding the

information is done using a structure called gates fig 13. These

gates are made up of sigmoid neural network layers and

pointwise multiplication operations.

Fig. 13. Gates

This sigmoid layer gives output as 0 or 1. When it's 0 none of the

information is left passed. If it's 1 then all the information is

passed through it.

This works fine when we want to predict the future word or

future event. But how can we predict the middle word for

example fill in the blanks question? In this case, we need

knowledge of the previous word and also the next word of the

blank space. This cannot be solved using LSTM. Here comes the

concept of Bidirectional LSTM. Let’s see that is a Bidirectional

LSTM (Bi-LSTM).

3.7.3 BI-LSTM (Bi-Directional Long Short-Term Memory)

Bidirectional LSTM [8] is a sequential model which consists of

two LSTM [7]. Where one process in the forward direction and

another process in the backward direction. This model not only

helps to predict immediately following words but also precede

word.

This model works well in our implementation as in our project

we need to recognize the tags such ‘O’ tags this includes as

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1758

shown in fig 2, person name, location name. To detect these tags

the model needs information on both adjacent words for example

in the sentence “Ram went to Mumbai” here to predict Ram is a

name of a person it needs knowledge of the future word.

Similarly, to predict Mumbai as a location name it needs

knowledge of precede word.

Fig. 14 Transformer

3.7.4 Transformers and Multi-head Self-Attention

Mechanism

The Transformer was proposed by Google AI Team in the

research paper [9]. The Transformer outperforms Google’s

Machine Translation model in specific tasks. The biggest benefit

of using a Transformer is how Transformer lends itself to

parallelization. The Transformer a model that uses a self-

attention mechanism to boost the speed at which neural network

models can be trained. Self-attention can completely replace

recurrence and helps to focus on particular words and their

relationship with other words.

A transformer has several Encoders in it. The number of

Encoders is a Hyper-Parameter. In the official Paper [9]

Transformer has 6 Encoders. In Encoder we have, Positional

Encoding, Self-Attention Layer, and Feed Forward Network

with Residual Connections as shown in fig 10. On top of the

Word Embeddings, we apply 3 different projections of linear

layers vector space and obtain query, keys, and values. For every

input word, we will apply linear layers and get Query, Keys, and

Values. These Query, Keys, and Values come from the same

text.

Fig. 15. Self Attention

Fig. 16. Self Attention, Matrix Multiplication, and Masking

q1

k1

v1

q2

k2

v2

q3

k3

v3

q1 x k1 q2 x k2 q3x k3

q3 x k1 q2 x k1 q3 x k1

students their opened

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1759

In the next step, we take the dot product of query and keys and

obtain attention scores. The query and keys are used to compute

the attention and values are used to compute attention-weighted

representation.

For example, in predicting the next words, we obtain query, keys,

and values for each word. On top of that, we obtain the

probability. For the third word, we have distributed over all 3

keys. For the second word two distribution because here we

don’t include the third key in our attention weighted average as

it is completely independent of the third time stamp and for the

first word only one as mentioned in fig 16. Here in the matrix

multiplication, we have masked with 0 but in reality, we will

mask with some negative numbers.

We obtain z1, z2 and z3 as follows:

z1 = q1*k1 + v1 (2)

z2 = q2*k1 + v1 + q2*k2 + v2 (3)

z3 = q3*k1+v1+q3*k2+v2+q3*k3+v3 (4)

This is how we get token-level representation. On top of these

z1, z2 and z3 we apply SoftMax layer.

Here there is no dependency between zn and zn-1

Doing Parallel all attention computation by just matrix

multiplication.

We will mask, after masking we apply SoftMax and we get valid

attention distribution.

The same in the Transformer model we extend this to multiple

heads. That means, we have many different projection matrixes

and compute the attention. This operation is called a multi-head

self-attention mechanism.

Many variants of attention are:

Original a(q, k) = w2T * tanh(w1[q;k]) (5)

Bilinear Product: a(q, k) = qTWk (6)

Dot Product: a(q, k) = qTk (7)

 Scaled dot Product: a(q, k) =
𝑞𝑇𝑘

√|𝑘|
 (8)

3.7.5 Positional Encoding: Attention models don’t contain any

recurrence or convolution, positional encoding is added to the

model to give some information about the relative position of the

words in a sentence.

This positional encoding is added to the embedding layer.

Embedding represents a token in d-dimension space where

tokens with similar meanings will be closer to each other in

space.

But the Word embeddings don’t give any relative positions of

the words in a sentence. So, after adding positional encoding to

the word embeddings, similar words will be closer to each other

in the d-dimension space.

The formula to calculate the Positional Encoding is:

Pi,j = 𝐬𝐢𝐧 (
𝐢

𝟏𝟎𝟎𝟎𝟎

𝐣
𝐝𝐞𝐦𝐛−𝐝𝐢𝐦

) if j is even (9)

Pi,j = 𝐜𝐨𝐬 (
𝐢

𝟏𝟎𝟎𝟎𝟎

𝐣 − 𝟏
𝐝𝐞𝐦𝐛−𝐝𝐢𝐦

) if j is odd (10)

3.7.6 Bert: BERT [10] is a trained Transformer Encoder stack.

BERT has two variants, BERT Base with 12 Encoders and

BERT Large with 16 Encoders. Transformer Encoders are the

basic building blocks for BERT. The base for BERT is

Transformer. Now we have open-source Pre-trained BERT

available online, where we can change the last layer of the BERT

and our custom function to perform our tasks.

Fig. 17. BERT for Named Entity Recognition

Here we add our custom named entity recognition classifier on

top of the BERT with SoftMax Layer using the transfer learning

concept. We will include the top layers of the pre-trained BERT

and we will train our model which will identify the named

entities.

3.8 Proposed Model

We have collected the data from The Groningen Meaning Bank

(GMB) which has a corpus of English texts with deep semantic

annotations. It has around 1.4 million named entities. The data

was in XML form, which we have converted from XML to CSV.

The data has around 12 tags but we have taken only the essential

tags that are required for our application.

After Data Pre-processing, we have tokenized the text and

splitted the data into train and test. We are building different

models using RNN, LSTM, Attention model, and BERT

architecture and we will ensemble the predictions using

Horizontal Voting to get a more generalized model.

This final model is used to predict the named entity like Name,

location, etc. Once we identify these entities, we will mask this

to some pseudo data.

Working Example:

Raw Text Input: “I am Satwik, I am in Bengaluru.”

Output from the model: “I am XXX, I am in YYY.”

This model is being deployed in Django Rest Frameworks with

Flutter as frontend. By this user can post any data as data will be

completely masked.

 I am in Bengaluru BERT Classifier

Bengaluru

Location

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1760

Fig. 18. Proposed Model

3.8.1 Horizontal Voting Deep Learning Ensemble to Reduce Variance with different models

Fig. 19. Horizontal Voting Deep Learning Ensemble

Model Pred

“Person”

Model Pred

“Person”

Model Pred

“Person”

“Person”

Model Pred

“Location”

Deep NN

Model 1
Deep NN

Model 2

Deep NN

Model 4

“Person”

Deep NN

Model 3

Final Prediction

”Person”

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1761

Predictive modeling problems where we have a smaller number

of training data relative to the number of unlabelled examples are

challenging. Neural networks are used to train these kinds of

problems and neural networks perform well on these types of the

problem although they can suffer from high variance in model

performance as measured on validation set or hold-out set.

This makes choosing the final model at end of the epoch is risky

as there is no clear signal of which model is performing well

compared to others towards the end of the training run.

As we have ensemble technique in Machine Learning [11]

similarly we have Neural Networks Ensemble [12] [13] [14]. We

have many ensemble techniques like Staking Generalization

[15].

One of method in ensemble technique is the horizontal voting

ensemble which is a simple approach to address this issue, where

we have a collection of models saved, and these saved models

are used as an ensemble that results in more stable and better

performance on average compared to randomly choosing a

single final model. This approach was developed specifically for

those predictive modeling problems where the training dataset is

small compared to the number of predictions to predict by the

model.

In the above figure, we can see we have 4 Deep Neural Networks

sub models each can have the same architecture or different

architecture. Each sub-model predicts the probability of the

class, here we can see prediction as “Person”.

Here 3 sub-models predict as a person and 1 sub-model predicts

as a location. So, the final model prediction is the “Person” class

as it has 3 votes. Here, for example, we have taken 4 sub-models

but in reality, we go with odd numbers of sub-models to avoid

equal class prediction by sub-models.

Let model be the set of neural network models being trained on

the training set T(xi,yi), such that m ∈ model. Let yhat be the

predictions obtained by all the models on the test set T’(xi’,yi’).

Let ‘array’ be the function for converting lists to an array

Algorithm 2: Ensemble Prediction

Input: models, test set T’(xi
’,yi

’), and empty yhat list

Output: predictions – final prediction obtained

1. Step 1: Obtain the predictions of each model

2. for each i in range(xi)

3. for each m in model, do

 yhat[i] ← predict(x[i])

 Calculate highest number of votes for ith test data and

append

 yhat[i] ← highest voted class

 end for

4. end for

5. Step 2 : Convert list into an array

6. yhat ← array(yhat)

7. Step 3: return yhat

4. EXPIREMENTAL RESULTS

Fig. 20. Model Training plots

We have trained all the models for around 20-50 epochs with a

batch size of 32.

We have done several experimented with our project by training

our models with different algorithms, and with different

approaches, we used BI-LSTM, Transformers, Bert. Here it was

found that each model achieved good results.

For all the models while training we have used

ReduceLROnPlateau callback with factor = 0.2, patience = 5,

min_lr = 0.001 and Learning rate scheduler.

When a user enters a sentence like, “Ramesh lives in Bangalore.”

then the following result should be obtained “Ramesh” as name-

tag, “lives” and “in” as o-tag, and “Bangalore” should be

identified as loc-tag.

Fig. 21. Model Training plots

After achieving this we will be masking the information into the

generalized form to provide anonymity for the users. For this

example, we will be replacing name-tag and loc-tag with

generalized form and only o-tags values will remain the same.

The overall result will be formed as <person name> lives in

<location name>. This can also be formed by creating a random

character and replacing it instead of private data like “gtans lives

in ytend” and explained as “gtans” is a person name and “yten”

a location name. Here gtans and yten are the pseudo data.

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1762

Fig. 22. LSTM model

Fig. 23. BERT model

Fig. 23. Testing results

The main part of the whole process was creating the dataset, the

model gave good results when all the tags of the dataset were

evenly distributed else model gave bias prediction towards the

tag which was more in number irrespective of accuracy. The

models gave bias prediction when model achieved good

prediction and also when model achieved average prediction, so

it was found that model gave the wrong prediction that was due

to dataset. It was found that creating the dataset was a more

causal part followed by building the model

5. CONCLUSION
In this paper, we showed the masking of private data using

Named Entity Recognition using Deep Learning concepts and

how it can be used for achieving data anonymity. We talked

about using various algorithms to achieve this and also portrayed

the results achieved. Data is something we should always be very

careful with. It describes us, helps us in finding things of similar

interest like us but we must remember that it can also be used for

manipulating how we think and function. This model recognizes

the tags by their value and that value will be masked to

generalized detail. In the dataset, we have many tags but we have

limited the tags and taken only essential tags according to our

application requirements. If there is any person, organization

name or so on then the model will recognize it by its tags which

will be masked as an output. We hope that our work will enhance

the development of such tools soon.

6. REFERENCES
[1] Di Cerbo, Francesco & Trabelsi, Slim. (2018). Towards

Personal Data Identification and Anonymization Using

Machine Learning Techniques: ADBIS 2018 Short Papers

and Workshops, AI*QA, BIGPMED, CSACDB, M2U,

BigDataMAPS, ISTREND, DC, Budapest, Hungary,

September, 2-5, 2018, Proceedings. 10.1007/978-3-030-

00063-9_13.

[2] Vincze, Veronika, and Richárd Farkas. "De-identification in

natural language processing." 2014 37th International

Convention on Information and Communication

Technology, Electronics and Microelectronics (MIPRO).

IEEE, 2014.

[3] Medlock, Ben. "An Introduction to NLP-based Textual

Anonymisation." LREC. 2006.

[4] Webster, Jonathan J., and Chunyu Kit. "Tokenization as the

initial phase in NLP." COLING 1992 Volume 4: The 15th

International Conference on Computational Linguistics.

1992.

[5] Manning, Christopher D., et al. "The Stanford CoreNLP

natural language processing toolkit." Proceedings of 52nd

annual meeting of the association for computational

linguistics: system demonstrations. 2014.

[6] Sherstinsky, Alex. "Fundamentals of recurrent neural

network (RNN) and long short-term memory (LSTM)

network." Physica D: Nonlinear Phenomena 404 (2020):

132306.

[7] Hochreiter, Sepp & Schmidhuber, Jürgen. (1997). Long

Short-term Memory. Neural computation. 9. 1735-80.

10.1162/neco.1997.9.8.1735.

[8] M. Schuster and K. K. Paliwal, "Bidirectional recurrent

neural networks," in IEEE Transactions on Signal

Processing, vol. 45, no. 11, pp. 2673-2681, Nov. 1997, doi:

10.1109/78.650093.

[9] Vaswani, Ashish & Shazeer, Noam & Parmar, Niki &

Uszkoreit, Jakob & Jones, Llion & Gomez, Aidan & Kaiser,

Lukasz & Polosukhin, Illia. (2017). Attention Is All You

Need.

file:///C:/omak/Downloads/www.IJARIIT.com

International Journal of Advance Research, Ideas and Innovations in Technology

© 2021, www.IJARIIT.com All Rights Reserved Page |1763

[10] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT:

Pre-training of Deep Bidirectional Transformers for

Language Understanding.” 2018 [Online]. Available:

http://arxiv.org/abs/1810.04805

[11] Polikar R. (2012) Ensemble Learning. In: Zhang C., Ma Y.

(eds) Ensemble Machine Learning. Springer, Boston, MA.

https://doi.org/10.1007/978-1-4419-9326-7_1

[12] L. K. Hansen and P. Salamon, "Neural network ensembles,"

in IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 12, no. 10, pp. 993-1001, Oct. 1990, doi:

10.1109/34.58871.

[13] Y. Liu, X. Yao, Ensemble learning via negative correlation,

Neural Networks, Volume 12, Issue 10,1999, Pages 1399-

1404, ISSN 0893-6080, https://doi.org/10.1016/S0893-

6080(99)00073-8.

[14] MacKay D.J.C. (1995) Developments in Probabilistic

Modelling with Neural Networks — Ensemble Learning. In:

Kappen B., Gielen S. (eds) Neural Networks: Artificial

Intelligence and Industrial Applications. Springer, London.

https://doi.org/10.1007/978-1-4471-3087-1_37

[15] David H. Wolpert, Stacked generalization, Neural

Networks, Volume 5, Issue 2, 1992, Pages 241-259, ISSN

0893-6080, https://doi.org/10.1016/S0893-6080(05)80023-

1.

file:///C:/omak/Downloads/www.IJARIIT.com

