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ABSTRACT 
 

The Internet brings a lot of efficiency to our lives but we must 

be aware that everyone exchanges a huge amount of data while 

interacting with the internet. One of the most important leisure 

activities one gets from the internet is to be able to socialize. 

For example, social media has become part and the core of our 

lives. With more than 2.3 billion active users, data privacy is an 

issue of concern. The world of the internet has become full of 

frauds hunting for personal information they leverage for their 

immoral activities. So, coming up with an algorithm that could 

secure data and process it such that no private data is involved, 

and machines continue to be trained with greater data. This 

could mean a dataset with data that is processed in a manner 

to make it anonymous. If there is any private information, we 

will mask that information with pseudo data. We use Named 

Entity Recognition using Deep Learning for identifying and 

masking personal information. In this paper, we will discuss 

how we mask private data. This model will be a successful 

technique to hide one’s personal information to achieve 

complete data privacy. 

 

Keywords: Named Entity Recognition, Deep Learning, Social 

Media Platforms, Data privacy; Masking, Anonymity 

1. INTRODUCTION 
Social media user's concerns about their data privacy have spiked 

in recent years. Incidents of data breaches have alarmed many 

users to rethink their relationships to social media and the 

security of their personal information. The dramatic story of 

consulting agency Cambridge Analytica is an example that 

exploited the private information of over 50 million Facebook 

users to influence the 2016 American presidential election. 

These issues are not acceptable with private user information. 

According to the study conducted by the Pew trust, 80 percent of 

social media user’s information being concerned about 

businesses and advertisers accessing and using their social media 

posts. These privacy issues have prompted the advocacy of 

tighter regulations. 

 

People will hesitate to share on social media as their data can be 

used or leaked. Given today’s social media privacy issues and 

concern, skilled cybersecurity professionals will play a vital role 

in protecting the private user information and also the application 

needs some automation which can hide some private data.  

 

 
Fig. 1. An overview of privacy issues concerning the type of 

social media data Tasks 

 

 
Fig. 2. Where are People concerned about Online Privacy 
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1.1 Motivation 

Data privacy has become a very important topic in our lives as 

we are moving towards a more digitalized lifestyle. Crucial data 

is being collected of people when they are in different mental 

states through various digital devices installed in their homes or 

workplace. This data is later used to predict their behavior and 

maybe show advertisements accordingly. Even to train our 

machines for machine learning, we need to give them data, the 

data which is exposed to a larger group of people. But we are 

trying to anonymize this, anonymize the collected data, so even 

if it lands in the wrong hands, it holds no private information. 

This data can then be used for various other purposes as it still 

contains the gist of the whole idea. 

 

1.2 Problem Statement 

In the present scenario, we see a lot of people are facing mental 

health issues. This is mainly because of the stress which they 

face. This happens mainly due to the changed lifestyle of people. 

So mental health has become a need for all of us that needs to be 

addressed. Being physically fit is important, but at the same time, 

being mentally fit is also equally important for all of us. We have 

a lot of social media applications where users cannot share their 

thoughts/views.  

 

 
Fig. 3. Social Media usage growth 

 

Below listed are some of the issues, why users cannot express 

their thoughts/views: 

✓ Most of the social media application is collecting private 

information which can be hacked in the future and that 

information could be leaked to hackers who can misuse the 

data 

✓ There is no complete user anonymity: Users will have to 

share their email with the website and then are allowed to post 

anonymously, which is not complete anonymity. 

✓ Less accessibility: Most of these platforms are limited to the 

English language only. Moreover, the support for people who 

can’t type is missing at most sites, which makes these 

platforms less accessible to the public. 

✓ Targeted advertisements: Some platforms show targeted 

advertisements based on what users share. This could be a 

helpful feature, but this is something that is not beneficial 

when dealing with mental health. Users feel they are being 

tracked. 

✓ Disclosure of private information on social media 

applications: Although users are allowed to post 

anonymously, sometimes, the data they share contains some 

private information about other people. This can lead to 

unexpected problems. 

 

One of the solutions for the above-mentioned problems is an 

application where there is complete user anonymity. Complete 

user anonymity can be achieved by masking user’s private 

information with pseudo data. We train Deep Learning 

algorithms to identify these private user’s information and then 

mask this private information with pseudo data. We use Named 

Entity Recognition for identifying entities like Name, place, etc, 

and then we will mask it.  By this, we can able to hide private 

user’s information and achieve complete user anonymity. 

 

1.3 Objectives 

Our objective is to solve the problem of data privacy. We plan 

on removing the sensitive part from a given piece of data to 

ensure that no private information like names and addresses are 

present. All this data can be masked with pseudo data of the same 

category like mobile numbers, names, and addresses. This will 

keep the data legitimate as a whole and will also remove all the 

sensitive information it collects. This could be one of the 

methods to achieve complete data anonymity. 

 

2. LITERATURE REVIEW 
Currently, there are a lot of works that de-identify sensitive data 

and mask it with different approaches. This can be extended to 

different languages given a large dataset is available for the data: 

 

2.1 Towards Personal Data Identification and 

Anonymization Using Machine Learning Techniques [1] 

In this paper [1], they have implemented using Supervised 

Machine Learning Algorithms. If we use Deep Learning 

algorithms we can fine tune it and extend our model for another 

use cases using Transfer Learning concept but not possible using 

Machine Learning algorithms. 

 

2.2 De-identification in Natural Language Processing [2] 

This paper [2] focuses on the usage of NLP for de-identification 

and the importance it in different areas like medical, social 

media, and CVs and describes what data need to be preserved 

and removed. 

 

2.3 An Introduction to NLP-based Textual Anonymisation 

[3] 

This work by Ben Medlock [3] talks about building a corpus and 

the process of construction of the same. He critically evaluates 

the system and talks about the issues he faced working on the 

project. He also introduces the HMM-based tagger which could 

be used as a corpus for the anonymous data. 

 

3. IMPLEMENTATION 
3.1 Deep Learning 

Deep Learning is a subfield of Artificial Intelligence where it 

replicates the human brain, human Neural System. Deep 

Learning can be supervised, semi-supervised or unsupervised. 

Deep Learning is capable of learning unsupervised from data that 

is unstructured or unlabelled. Deep Learning algorithms enable 

us to train machines and make machines to understand the data 

and make decisions based on the correlation that exists between 

the dataset, the same way how humans think to make decisions 

with billion neurons connections. Deep Learning models are 

very slow to train and require high computational power, 

nowadays GPU or TPU have become a requirement to execute 

the deep learning algorithms. 
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Although GPUs are very expensive yet without them training 

deep neural networks to high performance is practically not 

feasible. Today Deep Learning models are achieving the State of 

the Art (SOTA) on challenging machine learning problems like 

language translation from one language to another. 

 

3.2 Natural Language Processing 

A subfield of Artificial Intelligence is natural language 

processing. NLP’s main goal is to understand and react to human 

languages. Like other Machine learning algorithms, NLP 

requires data to be trained. Working with text is very important 

and it is very hard as it requires knowledge from a diverse 

domain such as Linguistics, Statistics, Machine Learning, and 

these days Deep Learning. When data are trained with NLP 

models this algorithm tries to learn the language on its own with 

the help of available data its learning process is similar to 

humans learning natural languages. The advancement in NLP 

technology helps the world to grow better and faster. NLP helps 

humans in many aspects such as translation from one language 

to another this reduces the human’s burden in knowing all the 

languages. NLP help’s us to identify the tag of a given word, for 

example, “Bengaluru” with “geo-loc” as a tag. 

 

The chatbot is an application of NLP that can be used in 

Customer support, Schedule a Meeting, Product Suggestions, 

Order Pizza, and so on. Usage of chatbots in these areas not only 

reduces workload but also saves customers waiting time. NLP 

has the skill that reads, writes, and also speaks the given 

languages the same as humans do. Combining all these 

techniques an application can be built that can behave, interact 

the same as humans without giving an impression of a machine. 

 

3.3 Named Entity Recognition 

Named Entity Recognition (NER) also known as Named Entity 

Identification, entity chunking, and entity extraction is a subtask 

of extraction of information from a corpus of sentences. It helps 

us to identify named entities like a person, location, event, 

organization, etc which are already pre-defined.  

 

 
Fig. 4. Named Entity Recognition 

 

Extracting main entities like a person, location, etc. helps us to 

sort unstructured data and detect important information, which is 

crucial if we have to deal with a large corpus of datasets. Named 

Entity Recognition can be achieved using Deep Learning 

classification where we give a set of training examples with 

labels stating words with the corresponding entity as labels/class 

to the model. On training Deep Neural Networks model with 

probability function can able to predict the class which word 

belongs to. There are a lot of applications on Named Entity 

Recognition, in our application, we use mainly named entity 

recognition to identify tags like a person, location, etc, and mask 

this information to hide the private information of the users and 

make our application complete user anonymous. 

 
Fig. 5. Data in XML 

 

 
Fig. 6. XML to CSV 
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3.4 Data Collection and Data Pre-processing 

3.4.1 Dataset: We have collected data from The Groningen 

Meaning Bank (GMB) which has a corpus of English texts with 

deep semantic annotations. The dataset has more than 1.4 million 

different tags, each tag representing different named entities with 

their corresponding words.  GMB is an adequately large corpus 

with a lot of annotations. Unfortunately, GMB is not perfect. It 

is not a gold standard corpus, meaning that it’s not completely 

human-annotated and it’s not considered 100% correct. The 

corpus is created by using already existed annotators and then 

corrected by humans where needed. Here are the following 

classes in the dataset - 

✓ geo = Geographical Entity 

✓ org = Organization 

✓ per = Person 

✓ gpe = Geopolitical Entity 

✓ tim = Time indicator 

✓ art = Artifact 

✓ eve = Event 

✓ nat = Natural Phenomenon 

 

The attached dataset is in tab-separated format; the goal is to 

create a good model to classify the Tag column. The dataset is 

labeled using the IOB tagging system. 

 

The dataset is in XML form. The XML tree has words with all 

types mentioned. 

 

We have converted XML form to a structured Data Frame, that 

is to CSV format. We have parsed over the XML tree, extracted 

the words and their corresponding tags, and converted them to 

CSV files. 

 

3.4.2 XML to CSV Conversion: Let XML file be the Input that 

needs to be converted to CSV file. We will pass two empty lists 

that are words and tags list which need to be parsed and 

appended. 

 

Let result be a list that consists of all the punctuations and other 

symbols which need to be filtered out from the XML file.  

 

Algorithm 1: XML to CSV 

Input: XML file, words list, tags list, and result                                                 

Output: Converted Xml to CSV 

1. Step 1: Parse the XLM tree 

2. tree  ← parse(file) 

3. Step 2: Get root element from tree 

4. root  ← tree.getroot() 

5. Step 3: Parsing throgh root and fetching words and tags 

6. for each elem in root, do 

for each subelem in elem.findall(tags), do 

  if subelem attribute type == ‘tok’ 

   if subelem text in result  

    do nothing, pass or 

append(NaN) 

   else 

    words ←  append(text) 

  elif subelem attribute type == ‘namex’ 

   tags ← append(text) 

   end if 

7.             end for 

8. end for 

9. Step 4: Create Data Frame from list 

10. df = DataFrame({“words”: words, “tags”:tags}) 

11. Step 5: Convert Data Frame to CSV 

12. df.to_csv(‘ner.csv’, index = ‘false’) 

 

3.5 Tokenization 

The process of splitting a sentence or a phrase into smaller units 

that will be individual words, this split piece of words is called 

as tokens. For example, let's take a sentence “Alex knows to 

program.” on tokenizing we get [“Alex”, “knows”, “to”, 

“program”, “.”]  this tokenization [4] [5] is done by word 

boundaries. With the help of this tokenizer, we will be able to 

count the number of words in the text and count the frequently 

occurring words. After tokenization is done, we encode the 

tokens to numeric format. 

 

3.6 Word Embeddings 

Word Embeddings are created using neural networks with one 

input layer, one hidden layer and, one output layer. Neural 

Network doesn’t understand the raw text given as input. We 

should encode it to the numbers using one-hot encoding or 

tokenization. Word Embeddings are like a numerical 

representation of a text. It is a type of word representation and 

learned representation that has words with similar meanings to 

have similar representation. Word Embeddings is a technique 

where individual words are represented as real-valued vectors 

which are predefined in the vector space of corpus. Each word is 

mapped to one vector and the vector values are learned in a way 

that resembles a neural network, which is more efficient while 

predicting. 

 

Example of Predicting the next word: 

Student Opened their _____ 

The corpus has houses, books, lamps, and stamps. 

 

Here the prediction should be: Student Opened their books. 

 

Numerical Representation of Words houses books lamps stamps 

<0.6,     0. 2,      0.1,     0.1>   

 

How it is represented in Word Embeddings Each row of W 

contains feature weights for the corresponding word in the 

vocabulary. 

 
X will be the input given to the model to predict. 

 

Each dimension of X corresponds to a feature to the prefix 

 

X = < -2.3, 0.9, 5.4 > 

 

We do Matrix Multiplication of W weights and input X to obtain 

W*X 

W*X = < 1.8, -11.9, 12.9, -8.9 > 

 

On top of W*X, a probability function is applied say softmax 

function for multi labels. 

Softmax Function: 

Softmax(X) = 
𝑒𝑥

∑ 𝑒𝑖𝑛
𝑖

               (1) 

 

Softmax(W*X) = < 0.24, 0,73, 0.006, 0.002 > 

 

W =  1.2   -0.3      0.9      books 

                    0.2               0.4           -2.2      houses  

                    8.9              -1.9            6.5      lamps 

                    4.5               2.2            -0.1     stamps 
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The highest Probability is 0.73 that is for books so the prediction 

books. 

 

Student Opened their books. 

 

If the prediction is wrong, the Word Embeddings weights are 

adjusted to predict the right word. 

 

3.7 Recurrent Neural Networks 

We, humans, understand a sentence by understanding each word 

from it. A word is meaning changes concerning its past work. 

Similarly, neural network needs past event’s information to 

understand now happening or future accruing events. This 

cannot be achieved by a conventional neural network. 

 

This cannot be achieved by a conventional neural network. RNN 

[6] does this work, it does it by a network which is looped, this 

caries flow in information. An RNN is a duplicate of the same 

neural network where each one of it passes information to the 

other.  

 

RNN works well when it needs information from a previous 

word from the same sentence. But it fails when it needs 

information from the previous sentence for example “Bangalore 

is capital of Karnataka.” 

 

In this sentence, Karnataka is predicted with the help of previous 

information. But in the sentence “Raju is a fisherman, so he 

catches fish daily” to predict the work fish there is a huge gap 

with the word fisherman. Here RNN fails to handle these “long-

term dependencies”. So, in these cases we use LSTM. 

 

 
Fig. 7. RNN with its loops 

 

 
Fig. 8.  RNN which shows that it is a combination of the 

same neural network 

 

3.7.1 Long Short-term Memories (LSTM): LSTM [7] is a kind 

of RNN [6] that works well for long-term dependencies and also 

can remember the information for a longer period. It is capable 

of processing an entire sequence of data. 

 

3.7.2 Difference between RNN and LSTM 

 
Fig. 9.  RNN 

 

In traditional RNN fig 9, we have only one tanh layer but in 

LSTM we have 4 interactions as shown in fig 10. 

 
Fig. 10.  LSTM 

 

In fig 10 we can see there are many notations involved. Let’s 

understand it by looking into fig 11. 

 

Each line in fig 11 carries an entire vector from one node's output 

to the inputs of others. The learned neural network layers are 

represented by yellow boxes. The pink circle represents 

pointwise operations such as vector addition. 

 

 
Fig. 11.  Working LSTM 

 

 
Fig. 12.  Cell State 

 

The alternation in the information like removing or adding the 

information is done using a structure called gates fig 13. These 

gates are made up of sigmoid neural network layers and 

pointwise multiplication operations. 

 

 
Fig. 13. Gates 

 

This sigmoid layer gives output as 0 or 1. When it's 0 none of the 

information is left passed. If it's 1 then all the information is 

passed through it. 

 

This works fine when we want to predict the future word or 

future event. But how can we predict the middle word for 

example fill in the blanks question? In this case, we need 

knowledge of the previous word and also the next word of the 

blank space. This cannot be solved using LSTM. Here comes the 

concept of Bidirectional LSTM.  Let’s see that is a Bidirectional 

LSTM (Bi-LSTM). 

 

3.7.3 BI-LSTM (Bi-Directional Long Short-Term Memory) 

Bidirectional LSTM [8] is a sequential model which consists of 

two LSTM [7]. Where one process in the forward direction and 

another process in the backward direction. This model not only 

helps to predict immediately following words but also precede 

word. 
 

This model works well in our implementation as in our project 

we need to recognize the tags such ‘O’ tags this includes as 
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shown in fig 2, person name, location name. To detect these tags 

the model needs information on both adjacent words for example 

in the sentence “Ram went to Mumbai” here to predict Ram is a 

name of a person it needs knowledge of the future word. 

Similarly, to predict Mumbai as a location name it needs 

knowledge of precede word. 

 

 
Fig. 14 Transformer 

 

3.7.4 Transformers and Multi-head Self-Attention 

Mechanism 

The Transformer was proposed by Google AI Team in the 

research paper [9]. The Transformer outperforms Google’s 

Machine Translation model in specific tasks. The biggest benefit 

of using a Transformer is how Transformer lends itself to 

parallelization. The Transformer a model that uses a self-

attention mechanism to boost the speed at which neural network 

models can be trained. Self-attention can completely replace 

recurrence and helps to focus on particular words and their 

relationship with other words. 

 

A transformer has several Encoders in it. The number of 

Encoders is a Hyper-Parameter. In the official Paper [9] 

Transformer has 6 Encoders. In Encoder we have, Positional 

Encoding, Self-Attention Layer, and Feed Forward Network 

with Residual Connections as shown in fig 10. On top of the 

Word Embeddings, we apply 3 different projections of linear 

layers vector space and obtain query, keys, and values. For every 

input word, we will apply linear layers and get Query, Keys, and 

Values. These Query, Keys, and Values come from the same 

text. 

 

 
Fig. 15. Self Attention 

 

 
Fig. 16. Self Attention, Matrix Multiplication, and Masking 

q1 

k1 

v1 

q2 

k2 

v2 

q3 

k3 

v3 

q1 x k1 q2 x k2 q3x k3 

q3 x k1 q2 x k1 q3 x k1 

students their opened 
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In the next step, we take the dot product of query and keys and 

obtain attention scores. The query and keys are used to compute 

the attention and values are used to compute attention-weighted 

representation. 

 

For example, in predicting the next words, we obtain query, keys, 

and values for each word. On top of that, we obtain the 

probability. For the third word, we have distributed over all 3 

keys. For the second word two distribution because here we 

don’t include the third key in our attention weighted average as 

it is completely independent of the third time stamp and for the 

first word only one as mentioned in fig 16. Here in the matrix 

multiplication, we have masked with 0 but in reality, we will 

mask with some negative numbers.  

 

We obtain z1, z2 and z3 as follows: 

 

z1 = q1*k1 + v1          (2) 

 

z2 = q2*k1 + v1 + q2*k2 + v2                       (3) 

 

z3 = q3*k1+v1+q3*k2+v2+q3*k3+v3               (4) 

 

This is how we get token-level representation. On top of these 

z1, z2 and z3 we apply SoftMax layer. 

 

Here there is no dependency between zn and zn-1 

 

Doing Parallel all attention computation by just matrix 

multiplication. 

 

We will mask, after masking we apply SoftMax and we get valid 

attention distribution. 

 

The same in the Transformer model we extend this to multiple 

heads. That means, we have many different projection matrixes 

and compute the attention. This operation is called a multi-head 

self-attention mechanism. 

 

Many variants of attention are: 

 

Original a(q, k) = w2T * tanh(w1[q;k])       (5) 

 

Bilinear Product: a(q, k) =  qTWk       (6) 

 

Dot Product: a(q, k) = qTk        (7)    

           

     Scaled dot Product: a(q, k)  = 
𝑞𝑇𝑘

√|𝑘|
         (8) 

 

3.7.5 Positional Encoding: Attention models don’t contain any 

recurrence or convolution, positional encoding is added to the 

model to give some information about the relative position of the 

words in a sentence. 

 

This positional encoding is added to the embedding layer. 

Embedding represents a token in d-dimension space where 

tokens with similar meanings will be closer to each other in 

space. 

 

But the Word embeddings don’t give any relative positions of 

the words in a sentence. So, after adding positional encoding to 

the word embeddings, similar words will be closer to each other 

in the d-dimension space. 

 

The formula to calculate the Positional Encoding is: 

 

Pi,j   = 𝐬𝐢𝐧 (
𝐢

𝟏𝟎𝟎𝟎𝟎

𝐣
𝐝𝐞𝐦𝐛−𝐝𝐢𝐦

)  if j is even        (9) 

 

 

Pi,j  = 𝐜𝐨𝐬 (
𝐢

𝟏𝟎𝟎𝟎𝟎

𝐣 − 𝟏
𝐝𝐞𝐦𝐛−𝐝𝐢𝐦

)  if j is odd     (10) 

 

3.7.6 Bert: BERT [10] is a trained Transformer Encoder stack. 

BERT has two variants, BERT Base with 12 Encoders and 

BERT Large with 16 Encoders. Transformer Encoders are the 

basic building blocks for BERT. The base for BERT is 

Transformer. Now we have open-source Pre-trained BERT 

available online, where we can change the last layer of the BERT 

and our custom function to perform our tasks. 

 
Fig. 17.  BERT for Named Entity Recognition 

 

Here we add our custom named entity recognition classifier on 

top of the BERT with SoftMax Layer using the transfer learning 

concept. We will include the top layers of the pre-trained BERT 

and we will train our model which will identify the named 

entities. 

 

3.8 Proposed Model 

We have collected the data from The Groningen Meaning Bank 

(GMB) which has a corpus of English texts with deep semantic 

annotations. It has around 1.4 million named entities. The data 

was in XML form, which we have converted from XML to CSV. 

The data has around 12 tags but we have taken only the essential 

tags that are required for our application. 

 

After Data Pre-processing, we have tokenized the text and 

splitted the data into train and test. We are building different 

models using RNN, LSTM, Attention model, and BERT 

architecture and we will ensemble the predictions using 

Horizontal Voting to get a more generalized model. 

 

This final model is used to predict the named entity like Name, 

location, etc. Once we identify these entities, we will mask this 

to some pseudo data. 

 

Working Example: 

Raw Text Input: “I am Satwik, I am in Bengaluru.” 

Output from the model: “I am XXX, I am in YYY.” 

This model is being deployed in Django Rest Frameworks with 

Flutter as frontend. By this user can post any data as data will be 

completely masked. 

 

  

    

      I am in Bengaluru                              BERT           Classifier  

                                                                                                                      

Bengaluru  

Location 
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Fig. 18.  Proposed Model 

 

3.8.1 Horizontal Voting Deep Learning Ensemble to Reduce Variance with different models 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19. Horizontal Voting Deep Learning Ensemble 
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Predictive modeling problems where we have a smaller number 

of training data relative to the number of unlabelled examples are 

challenging. Neural networks are used to train these kinds of 

problems and neural networks perform well on these types of the 

problem although they can suffer from high variance in model 

performance as measured on validation set or hold-out set.  

 

This makes choosing the final model at end of the epoch is risky 

as there is no clear signal of which model is performing well 

compared to others towards the end of the training run. 

 

As we have ensemble technique in Machine Learning [11] 

similarly we have Neural Networks Ensemble [12] [13] [14]. We 

have many ensemble techniques like Staking Generalization 

[15]. 

 

One of method in ensemble technique is the horizontal voting 

ensemble which is a simple approach to address this issue, where 

we have a collection of models saved, and these saved models 

are used as an ensemble that results in more stable and better 

performance on average compared to randomly choosing a 

single final model. This approach was developed specifically for 

those predictive modeling problems where the training dataset is 

small compared to the number of predictions to predict by the 

model.  

 

In the above figure, we can see we have 4 Deep Neural Networks 

sub models each can have the same architecture or different 

architecture. Each sub-model predicts the probability of the 

class, here we can see prediction as “Person”.  

 

Here 3 sub-models predict as a person and 1 sub-model predicts 

as a location. So, the final model prediction is the “Person” class 

as it has 3 votes. Here, for example, we have taken 4 sub-models 

but in reality, we go with odd numbers of sub-models to avoid 

equal class prediction by sub-models. 

 

Let model be the set of neural network models being trained on 

the training set T(xi,yi), such that m ∈ model. Let yhat be the 

predictions obtained by all the models on the test set T’(xi’,yi’). 

Let ‘array’ be the function for converting lists to an array 

 

Algorithm 2: Ensemble Prediction 

 

Input: models, test set T’(xi
’,yi

’), and empty yhat list  

                                                  

Output: predictions – final prediction obtained 

 

1. Step 1: Obtain the predictions of each model 

2. for each i in range(xi) 

3.       for each m in model, do 

 yhat[i] ← predict(x[i]) 

 Calculate highest number of votes for ith test data and 

append 

 yhat[i] ← highest voted class 

      end for 

4. end for 

5. Step 2 : Convert list into an array 

6. yhat ← array(yhat) 

7. Step 3: return yhat 

 

4. EXPIREMENTAL RESULTS 

 
Fig. 20. Model Training plots 

 

We have trained all the models for around 20-50 epochs with a 

batch size of 32. 

 

We have done several experimented with our project by training 

our models with different algorithms, and with different 

approaches, we used BI-LSTM, Transformers, Bert. Here it was 

found that each model achieved good results.  

 

For all the models while training we have used 

ReduceLROnPlateau callback with factor = 0.2, patience = 5, 

min_lr = 0.001 and Learning rate scheduler. 

 

When a user enters a sentence like, “Ramesh lives in Bangalore.” 

then the following result should be obtained “Ramesh” as name-

tag, “lives” and “in”  as o-tag, and “Bangalore” should be 

identified as loc-tag. 

 

 
Fig. 21. Model Training plots 

 

After achieving this we will be masking the information into the 

generalized form to provide anonymity for the users. For this 

example, we will be replacing name-tag and loc-tag with 

generalized form and only o-tags values will remain the same. 

The overall result will be formed as <person name> lives in 

<location name>.  This can also be formed by creating a random 

character and replacing it instead of private data like “gtans lives 

in ytend” and explained as “gtans” is a person name and “yten” 

a location name. Here gtans and yten are the pseudo data. 
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Fig. 22. LSTM model 

 

 
Fig. 23. BERT model 

 

 
Fig. 23. Testing results 

The main part of the whole process was creating the dataset, the 

model gave good results when all the tags of the dataset were 

evenly distributed else model gave bias prediction towards the 

tag which was more in number irrespective of accuracy. The 

models gave bias prediction when model achieved good 

prediction and also when model achieved average prediction, so 

it was found that model gave the wrong prediction that was due 

to dataset. It was found that creating the dataset was a more 

causal part followed by building the model 

 

5. CONCLUSION 
In this paper, we showed the masking of private data using 

Named Entity Recognition using Deep Learning concepts and 

how it can be used for achieving data anonymity. We talked 

about using various algorithms to achieve this and also portrayed 

the results achieved. Data is something we should always be very 

careful with. It describes us, helps us in finding things of similar 

interest like us but we must remember that it can also be used for 

manipulating how we think and function. This model recognizes 

the tags by their value and that value will be masked to 

generalized detail. In the dataset, we have many tags but we have 

limited the tags and taken only essential tags according to our 

application requirements. If there is any person, organization 

name or so on then the model will recognize it by its tags which 

will be masked as an output. We hope that our work will enhance 

the development of such tools soon. 
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