Observations on the Pell Equation $x^2 = 3(y^2+y)+1$

M. A. Gopalan
mayilgopalan@gmail.com
Shrimati Indira Gandhi College,
Tiruchirappalli, Tamil Nadu

A. Vijayasankar
avsankar@gmail.com
National College,
Tiruchirappalli, Tamil Nadu

Sharadha Kumar
sharadhak12@gmail.com
National College,
Tiruchirappalli, Tamil Nadu

ABSTRACT

This paper concerns with the problem of obtaining non-zero distinct integer solutions to the positive pell equation represented by the binary quadratic equation $x^2 = 3(y^2+y)+1$. A few interesting relations among the solutions are presented. Further, by considering suitable linear combinations among the solutions of the considered hyperbola, the other choices of hyperbolas, parabolas, 2nd order Ramanujan numbers, sequence of diophantine 3-tuples with suitable property are presented. A general formula for generating sequence of integer solutions based on the given solution is illustrated.

Keywords—Positive pell equation, binary quadratic, hyperbola, parabola, 2nd order Ramanujan numbers, sequence of diophantine 3-tuples

1. INTRODUCTION

One of the areas of Number theory that has attracted many mathematicians since antiquity is the subject of diophantine equations. A diophantine equation is a polynomial equation in two or more unknowns such that only the integer solutions are determined. No doubt that diophantine equation possess supreme beauty and it is the most powerful creation of the human spirit. A Pell equation is a type of non-linear diophantine equation in the form $y^2 - Dx^2 = \pm 1$ where $D > 0$ and square-free. The above equation is also called the Pell-Fermat equation. In Cartesian co-ordinates, this equation has the form of a hyperbola. The binary quadratic diophantine equation having the form

$$y^2 = Dx^2 + N \ (N > 0 ; \ D > 0, \text{ a non-square integer})$$

is referred to as the positive form of the Pell equation and one may refer [1-10] for a few illustrations on Pell equations. As quadratic Diophantine equations are rich in variety, the above references motivated us for determining integer solutions to other choices of positive Pell equation.

In this communication, the Pell equation $x^2 = 3(y^2+y)+1$ is considered for obtaining non-zero distinct integer solutions. Further, by considering suitable linear combinations among the solutions of the considered hyperbola, the other choices of hyperbolas, parabolas, 2nd order Ramanujan numbers, sequence of diophantine 3-tuples with suitable property are presented. A general formula for generating sequence of integer solutions based on the given solution is illustrated.

2. METHOD OF ANALYSIS

The hyperbola represented by the non-homogeneous quadratic equation under consideration is

$$x^2 = 3(y^2 + y) + 1 \quad (1)$$

Treating (1) as a quadratic in y and solving for y, we get

$$y = \frac{-3 \pm \sqrt{12x^2 - 3}}{6} \quad (2)$$

Let

$$Y^2 = 12x^2 - 3 \quad (3)$$
The smallest positive integer solution to (3) is \(x_0 = 1, \ Y_0 = 3 \). To find the other solutions to (1), consider the corresponding Pellian equation given by

\[Y^2 = 12x^2 + 1 \]

Where the general solution \(\tilde{x}_n, \tilde{y}_n \) is

\[
\begin{align*}
\tilde{y}_n &= \frac{1}{2} f_n \\
\tilde{x}_n &= \frac{1}{4\sqrt{3}} g_n
\end{align*}
\]

where

\[
\begin{align*}
f_n &= (7 + 4\sqrt{3})^{n+1} + (7 - 4\sqrt{3})^{n+1} \\
g_n &= (7 + 4\sqrt{3})^{n+1} - (7 - 4\sqrt{3})^{n+1}, \quad n = 0, 1, 2, \ldots \ldots
\end{align*}
\]

Employing the lemma of Brahmagupta between the solutions \((x_0, Y_0) \) & \((\tilde{x}_n, \tilde{y}_n) \), the general solution \((x_{n+1}, Y_{n+1}) \) to (3) is given by

\[
\begin{align*}
x_{n+1} &= x_0 \tilde{y}_n + Y_0 \tilde{x}_n \\
&= \frac{1}{2} f_n + \frac{\sqrt{3}}{4} g_n \\
Y_{n+1} &= Y_0 \tilde{y}_n + Dx_0 \tilde{x}_n \\
&= 3*\frac{1}{2} f_n + \sqrt{3}* g_n
\end{align*}
\]

In view of (2) and taking the positive sign before the square-root on the R.H.S. of (2), we have

\[
y_{n+1} = \frac{1}{12} (3f_n + 2\sqrt{3}g_n - 6)
\]

Thus, (5) and (6) represented the integer solutions to (1). A few numerical solutions to (1) are presented in Table below:

<table>
<thead>
<tr>
<th>N</th>
<th>(x_{n+1})</th>
<th>(y_{n+1})</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>13</td>
<td>7</td>
</tr>
<tr>
<td>1</td>
<td>181</td>
<td>104</td>
</tr>
<tr>
<td>2</td>
<td>2521</td>
<td>1455</td>
</tr>
<tr>
<td>3</td>
<td>35113</td>
<td>20272</td>
</tr>
</tbody>
</table>

3. OBSERVATIONS

The \(x \)-values are odd primes whereas \(y \)-values are alternatively odd and even. A few interesting relations among the solutions are given below:

- \(x_{n+3} - 14x_{n+2} + x_{n+1} = 0 \)
- \(y_{n+3} - 14y_{n+2} + y_{n+1} = 6 \)
- \(12y_{n+1} + 6 = x_{n+2} - 7x_{n+1} \)
- \(12y_{n+2} + 6 = -x_{n+1} + 7x_{n+2} \)
- \(12y_{n+3} + 6 = -7x_{n+1} + 97x_{n+2} \)
- \(168y_{n+1} + 84 = x_{n+3} - 97x_{n+1} \)
- \(24y_{n+2} + 12 = x_{n+3} - x_{n+1} \)
- \(168y_{n+3} + 84 = 97x_{n+3} - x_{n+1} \)
- \(4x_{n+1} = y_{n+2} - 7y_{n+1} - 3 \)
- \(4x_{n+2} = 7y_{n+2} - y_{n+1} + 3 \)
- \(4x_{n+3} = 97y_{n+2} - 7y_{n+1} + 45 \)
- \(56x_{n+1} = y_{n+3} - 97y_{n+1} - 48 \)
\[8x_{n+2} = y_{n+3} - y_{n+1} \]
\[56x_{n+3} = 97y_{n+3} - y_{n+1} + 48 \]
\[x_{n+1} = 7x_{n+2} - 12y_{n+2} - 6 \]
\[x_{n+3} = 7x_{n+2} + 12y_{n+2} + 6 \]
\[y_{n+1} = 7y_{n+2} - 4x_{n+2} + 3 \]
\[y_{n+3} = 7y_{n+2} + 4x_{n+2} + 3 \]

Expressions representing square integers:
\[[15x_{2n+2} - x_{2n+3} + 2] \]
\[\frac{1}{14} [209x_{2n+2} - x_{2n+4} + 28] \]
\[[2y_{2n+3} - 26y_{2n+2} - 10] \]
\[\frac{1}{7} [y_{2n+4} - 181y_{2n+2} - 76] \]

Expressions representing cubic integers:
\[[15x_{3n+3} - x_{3n+4} + 3(15x_{n+1} - x_{n+2})] \]
\[\frac{1}{14} [209x_{3n+3} - x_{3n+5} + 3(209x_{n+1} - x_{n+3})] \]
\[[2y_{3n+4} - 26y_{3n+3} + 6y_{n+2} - 78y_{n+1} - 48] \]
\[\frac{1}{7} [y_{3n+5} - 181y_{3n+3} + 3y_{n+3} - 543y_{n+1} - 360] \]

Expressions representing biquadratic integers:
\[(15x_{4n+4} - x_{4n+5}) + 4(15x_{n+1} - x_{n+2})^2 - 2 \]
\[(15x_{4n+4} - x_{4n+5}) + 4(15x_{2n+2} - x_{2n+3} + 2) - 2 \]
\[\frac{1}{14} (209x_{4n+4} - x_{4n+6}) + \frac{1}{49} (209x_{n+1} - x_{n+3})^2 - 2 \]
\[\frac{1}{14} (209x_{4n+4} - x_{4n+6}) + \frac{2}{7} (209x_{2n+2} - x_{2n+4} + 28) - 2 \]
\[(2y_{4n+5} - 26y_{4n+4} - 14) + 16(y_{n+2} - 13y_{n+1} - 6)^2 - 2 \]
\[(2y_{4n+5} - 26y_{4n+4} - 14) + 8(y_{2n+3} - 13y_{2n+2} - 5)^2 - 2 \]
\[\frac{1}{7} (y_{4n+6} - 181y_{4n+4} - 90) + \frac{4}{49} (y_{n+3} - 181y_{n+1} - 90)^2 - 2 \]
\[\frac{1}{7} (y_{4n+6} - 181y_{4n+4} - 90) + \frac{4}{7} (y_{2n+4} - 181y_{2n+2} - 76)^2 - 2 \]

Employing linear combinations among the solutions, one obtains solutions to other choices of hyperbolas

Choice1: Let \(Y = x_{n+2} - 13x_{n+1}, X = 15x_{n+1} - x_{n+2} \)

Note that \((X,Y) \) satisfies the hyperbola
\[3X^2 - 4Y^2 = 12 \]

Choice2: Let \(Y = x_{n+3} - 181x_{n+1}, X = 209x_{n+1} - x_{n+3} \)

Note that \((X,Y) \) satisfies the hyperbola
\[3X^2 - 4Y^2 = 48*49 \]

Choice3: Let \(Y = 15y_{n+1} - y_{n+2} + 7, X = 2y_{n+2} - 26y_{n+1} - 12 \)

Note that \((X,Y) \) satisfies the hyperbola
\[4X^2 - 3Y^2 = 4 \]

Choice4: Let \(Y = 209y_{n+1} - y_{n+3} + 104, X = y_{n+3} - 181y_{n+1} - 90 \)

Note that \((X,Y) \) satisfies the hyperbola
\[4X^2 - 3Y^2 = 49*16 \]
Employing linear combinations among the solutions, one obtains solutions to other choices of parabolas

Choice1: Let \(Y = x_{n+2} - 13x_{n+1}, \) \(X_1 = \chi_{2n+2} - x_{2n+3} + 2 \)

Note that \((Y, X_1)\) satisfies the parabola

\[
3X_1 - 4Y^2 = 12
\]

Choice2: Let \(Y = x_{n+3} - 181x_{n+1}, \) \(X_1 = 209x_{2n+2} - x_{2n+4} + 28 \)

Note that \((Y, X_1)\) satisfies the parabola

\[
21X_1 - 2Y^2 = 21*56
\]

Choice3: Let \(Y = 209y_{n+1} - y_{n+3} + 104, \) \(X_1 = y_{2n+4} - 181y_{2n+2} - 76 \)

Note that \((Y, X_1)\) satisfies the parabola

\[
28X_1 - 3Y^2 = 4*196
\]

Choice4: Let \(Y = 15y_{n+1} - y_{n+2} + 7, \) \(X_1 = y_{2n+3} - 13y_{2n+2} - 5 \)

Note that \((Y, X_1)\) satisfies the parabola

\[
2X_1 - 3Y^2 = 4
\]

Considering suitable values of \(x_{n+1} \) and \(y_{n+1} \), one generates \(2^{nd} \) order Ramanujan numbers with base integers as real integers

For illustration, consider

\[
y_2 = 104 = 1\times104 = 2\times52 = 4\times26 = 8\times13
\]

Now, \(1\times104 = 2\times52 \)

\[
\rightarrow (104+1)^2 + (52-2)^2 = (104-1)^2 + (52+2)^2
\]

\[
\rightarrow 105^2 + (50)^2 = (103)^2 + 54^2 = 13525
\]

\[
1\times104 = 4\times26
\]

\[
\rightarrow (104+1)^2 + (26-4)^2 = (104-1)^2 + (26+4)^2 = 11509
\]

\[
1\times104 = 8\times13
\]

\[
\rightarrow (104+1)^2 + (13-8)^2 = (104-1)^2 + (13+8)^2 = 11050
\]

\[
2\times52 = 4\times26
\]

\[
\rightarrow (52+2)^2 + (26-4)^2 = (52-2)^2 + (26+4)^2 = 3400
\]

\[
2\times52 = 8\times13
\]

\[
\rightarrow (52+2)^2 + (13-8)^2 = (52-2)^2 + (13+8)^2 = 2941
\]

\[
4\times26 = 8\times13
\]

\[
\rightarrow (26+4)^2 + (13-8)^2 = (26-4)^2 + (13+8)^2 = 925
\]

Also,

\[
2\times52 = 4\times26 \rightarrow 27^2 - 25^2 = 15^2 - 11^2
\]

\[
\rightarrow 27^2 + 11^2 = 15^2 + 25^2 = 850
\]

Thus, \(13525, 11509, 11050, 3400, 2941, 925, 850 \) represent \(2^{nd} \) order Ramanujan numbers with base integers as real integers.

Considering suitable values of \(x_{n+1} \) & \(y_{n+1} \), one generates \(2^{nd} \) order Ramanujan numbers with base integers as Gaussian integers.

For illustration, consider again \(y_2 \) represented by (*)

Now, \(1\times104 = 2\times52 \rightarrow (1+i104)^2 + (2-i52)^2 = (1-i104)^2 + (2+i52)^2 = -13520 \)

Also, \(1\times104 = 2\times52 \rightarrow (104+i)^2 + (52-i2)^2 = (104-i)^2 + (52+i2)^2 = 13520 \)

Note that \(-13520 \& 13520\) represent \(2^{nd} \) order Ramanujan numbers with base integers as Gaussian integers.

In a similar manner, other \(2^{nd} \) order Ramanujan numbers are obtained

© 2021, www.IJARIIT.com All Rights Reserved
Formation of sequence of Diophantine 3-tuples:
Consider the solution to (1) given by
\[x_1 = 13 = a \text{ (say)}, \quad y_1 = 7 = c_0 \text{ (say)} \]

It is observed that
\[ac_0 + k^2 - 91 = k^2, \text{ a perfect square} \]
The pair \((a, c_0)\) represents diophantine 2-tuple with property \(D(k^2 - 91)\).

If \(c_1\) is the 3rd tuple, then it satisfies the system of double equations
\[
\begin{align*}
13c_1 + k^2 - 91 &= p^2 \\
7c_1 + k^2 - 91 &= q^2
\end{align*}
\]
Eliminating \(c_1\) between \((1^*)\) and \((2^*)\), we have
\[6(k^2 - 91) = 13q^2 - 7p^2 \]
Taking
\[p = X + 13T, \quad q = X + 7T \]
in \((3^*)\) and simplifying, we get
\[X^2 = 91T^2 + k^2 - 91 \]
which is satisfied by
\[X = k, T = 1 \]
In view of \((4^*)\) and \((1^*)\), it is seen that
\[c_1 = 2k + 20 \]
Note that \((13,7,2k + 20)\) represents diophantine 3-tuple with property \(D(k^2 - 91)\).
The process of obtaining sequences of diophantine 3-tuples with property \(D(k^2 - 91)\) is illustrated below:
Let \(M\) be a 3*3 square matrix given by
\[
M = \begin{pmatrix}
1 & 0 & 2 \\
0 & 0 & -1 \\
0 & 1 & 2
\end{pmatrix}
\]
Now
\[(13,7,2k + 20)M = (13,2k + 20,4k + 59) \]
Note that
\[
\begin{align*}
13^*(2k + 20) + (k^2 - 91) &= \text{perfect square} \\
13^*(4k + 59) + (k^2 - 91) &= \text{perfect square} \\
(2k + 20)^*(4k + 59) + (k^2 - 91) &= \text{perfect square}
\end{align*}
\]
Therefore, the triple \((13,2k + 20,4k + 59)\) represents diophantine 3-tuple with property \(D(k^2 - 91)\). The repetition of the above process leads to sequences of diophantine 3-tuples whose general form \((a, c_{s-1}, c_s)\) is given by
\[
(13,13s^2 + (2k - 26)s - 2k + 20,13s^2 + 2ks + 7), \quad s=1,2,3,\ldots\]
A few numerical illustrations are given in Table below:

<table>
<thead>
<tr>
<th>(s)</th>
<th>((a, c_0, c_1))</th>
<th>((a, c_1, c_2))</th>
<th>((a, c_2, c_3))</th>
<th>(D(k^2 - 91))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(13,7,20)</td>
<td>(13,20,59)</td>
<td>(13,59,124)</td>
<td>D(-91)</td>
</tr>
<tr>
<td>1</td>
<td>(13,7,22)</td>
<td>(13,22,63)</td>
<td>(13,63,130)</td>
<td>D(-90)</td>
</tr>
<tr>
<td>2</td>
<td>(13,7,24)</td>
<td>(13,24,67)</td>
<td>(16,114,136)</td>
<td>D(-87)</td>
</tr>
</tbody>
</table>

It is noted that the triple \((c_{s-1}, c_s + 13, c_{s+1})\), \(s=1,2,3,\ldots\)
forms an arithmetic progression.
In a similar way, one may generate sequences of diophantine 3-tuples with suitable property through the other solutions to (1).
Generation of solutions:
Let \((x_0, y_0)\) represents any given solution to (1).
Consider the second solution \((x_1, y_1)\) to (1) given by
\[
x_1 = 2h - x_0, \quad y_1 = y_0 + h
\] (7)
Substituting (7) in (1) and simplifying, one obtains
\[
h = 4x_0 + 6y_0 + 3
\]
In view of (7), we have
\[
x_i = 7x_0 + 12y_0 + 6, \quad y_i = 4x_0 + 7y_0 + 3
\]
which is written in the form of matrix as
\[
(x_i, y_i, 1)^t = \begin{pmatrix} 7 & 12 & 6 \\ 4 & 7 & 3 \\ 0 & 1 & 1 \end{pmatrix} (x_0, y_0, 1)^t
\]
where \(t\) is the transpose. The repetition of the above process leads to the general solution to (1) as
\[
(x_{n+1}, y_{n+1}, 1)^t = \begin{pmatrix} Y_n & 3X_n & \frac{3X_n}{2} \\ X_n & Y_n & \frac{Y_n-1}{2} \\ 0 & 0 & 1 \end{pmatrix} (x_0, y_0, 1)^t, \ n=0,1,2,...
\]
where
\[
Y_n = \frac{1}{2} \left((7 + 4\sqrt{3})^{n+1} + (7 - 4\sqrt{3})^{n+1}\right)
\]
\[
X_n = \frac{1}{2\sqrt{3}} \left((7 + 4\sqrt{3})^{n+1} - (7 - 4\sqrt{3})^{n+1}\right)
\]

4. CONCLUSION
As quadratic Diophantine equations are rich in variety, the readers may attempt for finding integer solutions to quadratic Diophantine equations with two or more variables along with suitable properties.

5. REFERENCES