
Asheesh Raju, Anuj Gupta; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |466

ISSN: 2454-132X

Impact factor: 6.078
(Volume 6, Issue 4)

Available online at: www.ijariit.com

Software Defect Prediction by optimizing features weight

with a CNN
Asheesh Raju

Alakh Prakash Goyal Shimla University, Shimla,

Himachal Pradesh

Anuj Gupta

Alakh Prakash Goyal Shimla University, Shimla,

Himachal Pradesh

ABSTRACT

Machine Learning approaches are helpful & have well-tried

to be helpful in resolution issues & technical problems that

lack data. In most cases, the package domain issues may be

characterized as a method of learning that depends on the

assorted circumstances and changes of the technical issue

being addressed in keeping with the principles of machine

learning, a prophetic model is made by exploitation machine

learning approaches and classified into defective and non-

defective modules. Machine learning techniques facilitate

developers to retrieve helpful data when the classification of

kinds of technical problems being addressed in an exceedingly

specific field. This successively permits them to analyze

knowledge from totally different views, which may be used

because of the formation base of constructive concepts &

varied techniques to handle the technical problems. Machine

learning techniques are well-tried to be helpful within the

detection of package bugs. during this analysis prediction by

Convolution based mostly feature choice and Learning by

Random forest. In the proposed approach, the accuracy and

precision always improve and it also improves class wise.

There is a significant enhancement in defective and non-

defective class prediction as the random forest non-linearity

features help to improve the selection of effective parameters

by bagging approach. In the proposed approach, hybridization

of three approaches such as deep learning, machine learning

and sampling approach is done which significantly improve

overlapping of features and imbalance of class like KC2

dataset.

Keywords⸻ Machine Learning, CNN, Software Defect

Prediction, Random forest

1. INTRODUCTION
A DEFECT / BUG program is a problem in a software product

that does not satisfy a demand for functionality or end-user
requirements. In other words, a fault is a coding or logic error

which causes a program to defect or generate wrong/

unanticipated outcome.

A system having a significant number of vulnerabilities is called

unstable.• Reports that describe program glitches are considered

error reports. Bug-finding programs are regarded as error

detection devices. The method of bug-finding is called

debugging. The deliberate practice of inserting bugs into a

software system to approximately check coverage by tracking

the identification of those bugs is defined as bugging.

1.1 Software Defect Classification
Software Defects/Bugs are generally classified as per [51]:

(a) Severity / Impact: Fault SEVERITY or Impact is a software

fault (bug) designation which indicates the degree of

negative effect on software quality.

(b) Probability / Visibility: DEFECT PROBABILITY, also

known as Error Visibility or Failure Probability or Failure

Visibility, shows the probability that a recipient may find the

defect/bug.

• High: reached by all or nearly all feature users

• Medium: encountered by around 50 per cent of function

users.

• Low: Found by very few application users
Defect Probability can also be denoted in percentage (%).

(c) Priority / Urgency: Fault PRIORITY, also recognized as

Error Priority, shows how critical or urgent a fault is to be

repaired. While the Program Tester will originally set

preference, the Project/Product Manager typically finalizes

it.

(d) Related Dimension of Quality: This involves evaluating

the system's accessibility, flexibility, competition, quality,

functionality, deployment capability, maintenance,

consistency, portability, durability, monitoring, usability as

well as protection of the system.
(e) Related Module/Component: Linked Applications/

Devices suggest the program framework or system in which

the fault is found. It offers details regarding that whether the

component/module is unstable or unsafe. Module/

Component A, B, C

(f) Phase Detected: This indicates the phase in the software

development lifecycle where the defect was recognized.

• Unit, Integration, System, Acceptance Testing

(g) Phase Injected: Stage Injected shows the point in which the

error was inserted in the software creation lifecycle. In the

lifecycle of software creation Process, injection is often

file:///C:/omak/Downloads/www.IJARIIT.com
http://www.ijariit.com/

Asheesh Raju, Anuj Gupta; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |467

faster than the steps Observed. Only after careful root-cause

examination of the problem will the Process Injected be

identified.

• Requirements Development

• High Level Design

• Detailed Design

• Coding

• Build/Deployment

• Phase Detected

• Phase Injected

Detecting defects in a Software Project is necessary for the

successful implementation & working of the software project.

For the reason of project estimation, the below mentioned 4

steps are considered [33]:

• Size estimation of the product development: Lines of Code

(LOC) and Feature Points (FP) are available which aid in this
form of estimation. However, several other approaches are

often used to quantify defects like Use case points (UCP),

Story points etc. In this calculation there are other benefits

as well as demerits.

• Effort Defect in person-month or person-hour words.

• Failure to plan calendar months.

Project expense Dollar fault, or some other local currency.

1.2 Principles of Defect Prevention

How does a system work in order to avoid faults? The solution

falls through a process of avoidance of defects (Figure 1.2). The
crucial part of the cycle of fault prevention starts with the design

review – converting the consumer expectations into product

parameters without making any more errors. Software

infrastructure is developed, code analysis as well as checking is

performed to evaluate the faults, accompanied by the recording

as well as documenting of the faults.

Fig. 1: Defect Prevention Cycle (Source: 1998 IEEE

Software Productivity Consortium)

The structures as well as procedures in the gray-coloured

framework reflect the handling of defects under much of the

software industry's current paradigm–defect identification,

tracking/ documentation, and defect evaluation to arrive at fast,

short-term solutions. The procedures that make up the essential
part of methods for the avoidance of defects are on the white

background. The basic step of the technique of defect prevention

is to evaluate defects in order to achieve their root causes, to find

a swift response as well as preventive intervention. Such

prevention strategies are implemented in the company as a

model for potential initiatives, with approval and assurances by

team leaders. The goal of the technique is to provide the

company with a long-term approach and the ability to learn from

errors [52]. Many of the techniques of defect prevention

practices involve a facilitator. The facilitator may be the group

leader of software engineering (wearing another accountability

hat) or some aspect of the team. The appointed flaw mitigation

coordinator is directly engaged in directing initiatives to

eliminate defects, organizing staff and management meetings

and coordination, as well as strengthening measures/guidelines
for defective reduction.

2. RELATED WORK
Aslı Sar et al. [1] carried out a comprehensive study of CSE

literature. The researchers reported 158 studies and 6 secondary

studies related to them. They further checked 67 primary studies

which carried our standards for quality evaluation. They

identified 10 study questions as well as synthesized various

methods with respect to each topic included in primary studies.
The aim of this analysis is to perform a detailed review of

software engineering (CSE) crowdsourcing regarding business

models, resources, systems, processes for software creation, but

digital economy. Various research teams study crowdsourcing

software for coding as well as reviewing activities.

Crowdsourcing practices a specific methodology that puts

greater focus on project planning, task definition as well as

deployment. There is not adequate literature in CSE on

strategies to study effort assessment and related cost factors. The

nature of the mission as well as its projected length take an

important part in predicting it.

Hyunjoo Kim et al. [2] established a model for calculating

installation costs via the collection of IFC cost details. This

report concentrated on repairing walls of office buildings, and

the costs related with the repair. The suggested solution

described two key benefits. Next, the substitution details used to

equate various situations is immediately retrieved from a BIM

file as well as analyzed using IFC to determine a cost estimate.

Next, the precision is improved by comparing specific cost-

related details, like contractors and suppliers, with the support

of CBR in calculating installation costs.

Assia Najm et al. [3] elaborate a comprehensive mapping

analysis that categorizes DT articles in line with the following

criteria: work methodology, form of input, tools used in

conjunction with DT approaches in addition to defining the

platforms and patterns for publishing. An automated quest was

carried out on five digital repositories to carry out a

comprehensive mapping of DT studies, primarily devoted to

SDEE conducted in the period 1985-2017. The researchers find

46 studies which are significant. The findings essentially

showed that most of the researchers depend on the form of

contribution to the methodology.

Przemyslaw Pospieszny et al. [4] Reduces the difference

between up-to-date study results as well as operational

execution by implementing efficient and realistic machine

learning delivery and management strategies, leveraging

research findings as well as industry’s best practices. This was

done by the implementation of ISBSG dataset, smart data

planning, an average ensemble of three machine learning

algorithms and cross validation. The effort in addition to length

calculation models obtained was intended to get a decision-

making method for companies designing or integrating

information systems.

Ahmed BaniMustafa et al. [5] proposes the design of this

forecast utilizing three machine learning methods applied to

COCOMO NASA pre-processed test data spanning 93 projects:

Naïve Bayes, Logistic Regression and Random Forests. The

developed models were cross-validated using five folds as well

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.sciencedirect.com/science/article/pii/S0164121219300779#!
https://www.sciencedirect.com/science/article/pii/S0164121217302947#!

Asheesh Raju, Anuj Gupta; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |468

as assessed using Classification Accuracy, Precision, Recall,

and AUC. The effects of the calculation were then contrasted

with that of COCOMO. All the methods used have been

effective in obtaining better performance than the COCOMO

model as opposed to this model. The best efficiency, however,
was obtained using both Naïve Bayes or Random Forests. Due

to the fact that in its ROC curve as well as Recall ranking, Naïve

Bayes outperformed both the other two methods. Random

Forests has a stronger Confusion Index, and scored better in both

Identification Accuracy as well as Precision metrics. The

findings of this research affirm the relevance of data mining in

general, as well as the methodology applied to machine

assessment in specific.

Rekha Tripathi et al. [6] present the comparative analysis

between traditional techniques and Machine Learning (ML)

methods. Findings show that ML approaches have a more
reliable estimate of effort relative to conventional methods of

estimating effort. In this article, the contrasts of various Machine

learning methods are performed to research whether the ML

approach is more effective, and in which scenario.

Ashu Bansal et al. [7] stresses the production of a fuzzy multi-

criteria-based approach to decision-making by combining Fuzzy

Set Theory as well as Weighted Distance Dependent

Approximation. To illustrate the accuracy of the suggested

technique, framework testing is also performed by comparison

with current methodologies. Apart from this, sensitivity review
is also conducted to test the criticality of the criteria collection.

Munialo, et al. [8] exhaustively study current software

commitment calculation approaches by developing calculation

methods tailored to modernise app creation techniques.

Deepika Badampudiet al. [9] Identify considerations that could

affect the decision in the literature to select between specific

component roots and decision-making approaches (for example,

optimization). A systematic review research was performed on

peer-reviewed literature. The study conducted a minimum of 24

main trials. The sources of the part were contrasted primarily in-
house vs. COTS and COTS vs. OSS. They established 11 factors

which affect or influence the decision to choose the origin of a

variable. When evaluating the origin of the variable, little

information existed about the relative influence of a variable

origin on the element. Models of optimisation are the

methodology most frequently discussed in the solutions.

Tassio Vale et al. [10] investigate the modern CBSE area by a

thorough analysis of the literature. To this end, 1231 studies

were reviewed that range from 1984 to 2012. Using the available

data, this paper discusses five dimensions of CBSE: key goals,
study subjects, fields of use, strength of analysis as well as

techniques of applied science. The key priorities defined were to

maximize efficiency, to save money or boost quality. The

technology areas that are often discussed are homogeneously

split into commercial-off -the-shelf (COTS), centralized and

embedded systems.

Ye Yang et al. [11] presents a conceptual design with a modern

pedagogical approach utilizing LEGOs for teaching principles

as well as techniques for device calculation as well as

measurement. Two case study sessions test the framework: one
on seasoned part-time business graduates, and one on novice on-

campus graduates. Results from both sessions suggest a good

effect on learning for the students.

Sathya, R. et al. [12] recognizes key factors that in effect

propose approaches to increase the quality and usability of apps.

The paper also illustrates how the different methods of defect

prediction are applied, contributing to a decreased severity of

faults.

3. THE PROPOSED METHOD
STEP 1: Select data from the promise dataset and divide it into

features and labels.

STEP 2: Features are convoluted by convolution layers and

mapped by using two activation functions; namely sigmoid and

TANH, because different efficient values come together as a

result.

STEP 3: After activation, function is mapped by max polling,
then merged in matrix A and labelled in Matrix B at last.

STEP 4: Upon labelling, apply sigmoid function which finally

gives us the abstract features.

STEP 5: Features are learned by decision tree and make no

overlapped forest.

STEP 6: Out of the forest, find useful trees using the boosting

approach, then make the final model and analyse the different

parameters.

3.1 Methodology

3.1.1 Convolution with Random forest

STEP 1: In the first step, extract or parse the features of the
promise dataset and concentrated with the feature. Both the

features are provided with the software’s domain-based

information, along with the complexity of the software.

STEP 2: After extraction of the features, the label of aging is

provided but not the aging. So, the proposed approach initially

finds the software module and predicts whether the module is

reused or not. If it is predicted, then it is classified according to

feature aging but not aging.

STEP 3: Extracted features are convoluted and then the
mapping is done by using sigmoid and TANH activation

function. These functions not only map the non-linearity of

features but also map the bigger value to the abstract value.

STEP 4: The proposed approach uses two types of convolution:

local and global-local pooling. This in turn improves the local

optimization of features and the global features improve the

overall efficiency of the features.

STEP 5: After extraction of the features, reusability-based

regression is applied using the following architecture.

STEP 6: After reusability, prediction selects the decision tree

by:

STEP 7: Random forest generates a large number of decision

trees and selects an effective tree out of the bulk number of

decision trees by the following equation:

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.sciencedirect.com/science/article/pii/S0164121216301212#!
https://www.sciencedirect.com/science/article/pii/S0164121215002095#!

Asheesh Raju, Anuj Gupta; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |469

In the above equation, mapping of trees is done and prediction

is done depending upon convolution aging classification.

STEP 8: Analyze the predicted model by precision, recall, and

accuracy Convolutional Neural Networks (CNN), were first
introduced by Yann LeCun's in 1998 for Optical Character

Recognition (OCR), where they have shown impressive

performance on character recognition. CNN is not just used for

image related tasks, they are also commonly used for signals and

language recognition, audio spectrograms, video, and

volumetric images.

4. RESULT ANALYSIS
4.1 Result Analysis

This part includes the details of the experiment based on

different classifiers as represented below:

Table 1: Analysis of the different dataset on the existing

and proposed approach

D
a

ta
se

t

A
c
c
u

r
a

c
y

(C
N

N
)

A
c
c
u

r
a

c
y

(E
n

se
m

b
le

)

P
r
e
c
is

io
n

(C
N

N
)

P
r
e
c
is

io
n

(E
n

se
m

b
le

)

R
e
c
a

ll

(C
N

N
)

R
e
c
a

ll

(E
n

se
m

b
le

)

CM1 96.34 94.043

33333 96.45 95.283

33333
95.5291

6667
94.27916

667

JM1 97.45 93.746

66667
98.45 93.913

33333
95.89 94.64

KC1 98.34 93.23 97.67 92.34 97.67 93.34

KC2 94.34 90.45 94.56 89.12 96.34 98.56

PC1 98.56 96.56 99.12 95.12 98.99 98.78

Table 1 analyses the proposed approach and the existing

approach performance on different datasets using comparison

metrics. The results of the experiment are shown in table 5.1 and

the graphical representation is presented via figure 2, 3 and 4

based on accuracy, precision and recall comparison,

respectively. The comparison of the results is shown in two

aspects. The first aspect is different dataset and the other aspect
is the proposed and the existing approach. In the first

comparison, accuracy of different dataset varies from 94% -

98% in the proposed approach and the existing approach varies

from 90% - 96%.

Fig. 2: Accuracy analysis of the different dataset on the

existing and proposed approach

In figure 2, the analysis of accuracy is done and it shows the

accuracy pattern as same in the proposed and existing approach.

In figure 5.1, higher accuracy in KC1 is obtained and minimum

accuracy is obtained in KC2. On comparing with the proposed

and existing approach, CNN based proposed approach improves

accuracy significantly. In table 1, another parameter is precision

ranging from 94% - 99% in the proposed approach and the

existing approach ranges from 89% - 95%. Figure 3 shows the

comparison of precision.

Fig. 3: Precision analysis of the different dataset on the

existing and proposed approach

In figure 3, the precision analysis of different PROMISE

datasets is done. The graph shows the precision pattern which is

not the same as in the case of accuracy. In precision cases,

increased precision can be observed in the two datasets i.e. JM1

and KC1. But in this case, KC2 reduces. Whereas, in the case of
accuracy, increment & reduction occur only for a single dataset

i.e. KC1 and KC2. But in fig 3, the precision of JM1 and KC1 is

an approximate value. Similarly, precision and its value are

significantly high as compared to the existing approach based on

PSO. The last section of this chapter analyses the reason for the

performance-based increment of the proposed approach. Table

1 also analyses the recall parameter which varies from 95% -

98% in the proposed approach and 93%-98% in the existing

approach. In fig 4, the analysis of the recall pattern comes after

the experiment and also the graphical representation of the

proposed and existing approach is done.

Fig. 4: Recall analysis of the different dataset on the

existing and proposed approach

Fig 4 and fig 5 show the recall and comparison analysis

respectively. But in fig 4, the analysis represents recall not

always but shows signs in the proposed approach in case of KC2

dataset. The average performance of all five datasets recalls

86

88

90

92

94

96

98

100

CM1 JM1 KC1 KC2 PC1

ACCURACY

Accuracy (CNN) Accuracy (Ensemble)

84

86

88

90

92

94

96

98

100

CM1 JM1 KC1 KC2 PC1

PRECISION

Precision (CNN) Precision (Ensemble)

90

92

94

96

98

100

CM1 JM1 KC1 KC2 PC1

RECALL

Recall (CNN) Recall (Ensemble)

file:///C:/omak/Downloads/www.IJARIIT.com

Asheesh Raju, Anuj Gupta; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |470

improves effectively in the proposed approach as compared to

the existing approach.

Fig. 5: Comparative Analysis of different dataset on the

existing and proposed approach

5. REFERENCES
[1] Sarı, Aslı, Ayşe Tosun, and GülfemIşıklarAlptekin. "A

systematic literature review on crowdsourcing in software

engineering." Journal of Systems and Software 153

(2019): 200-219.

[2] Kim, Hyunjoo, and Jonghyeob Kim. "A Case-Based

Reasoning Model for Retrieving Window Replacement

Costs through Industry Foundation Class." Applied
Sciences 9, no. 22 (2019): 4728.

[3] Najm, Assia, AbdelaliZakrani, and Abdelaziz Marzak.

"Decision Trees Based Software Development Effort

Estimation: A Systematic Mapping Study." In 2019

International Conference of Computer Science and

Renewable Energies (ICCSRE), pp. 1-6. IEEE, 2019.

[4] Pospieszny, Przemyslaw, Beata Czarnacka-Chrobot, and

Andrzej Kobylinski. "An effective approach for software

project effort and duration estimation with machine

learning algorithms." Journal of Systems and Software 137

(2018): 184-196.

[5] BaniMustafa, Ahmed. "Predicting software effort
estimation using machine learning techniques." In 2018

8th International Conference on Computer Science and

Information Technology (CSIT), pp. 249-256. IEEE, 2018.

[6] Tripathi, Rekha, and P. K. Rai. "Machine Learning

Methods of Effort Estimation and It’s Performance

Evaluation Criteria." International Journal of Computer
Science and Mobile Computing 6, no. 1 (2017): 61-67.

[7] Bansal, A., B. Kumar, and R. Garg. "Multi-criteria

decision-making approach for the selection of software

effort estimation model." Management Science Letters 7,

no. 6 (2017): 285-296.

[8] Munialo, Samson Wanjala, and Geoffrey

MuchiriMuketha. "A review ofagile software effort

estimation methods." (2016).

[9] Badampudi, Deepika, ClaesWohlin, and Kai Petersen.

"Software component decision-making: In-house, OSS,

COTS or outsourcing-A systematic literature

review." Journal of Systems and Software 121 (2016):
105-124.

[10] Vale, Tassio, Ivica Crnkovic, Eduardo Santana De

Almeida, Paulo Anselmo Da Mota Silveira Neto,

YguaratãCerqueira Cavalcanti, and Silvio Romero de

LemosMeira. "Twenty-eight years of component-based

software engineering." Journal of Systems and

Software 111 (2016): 128-148.

[11] Yang, Ye, and Linda Laird. "Teaching software estimation

through LEGOS." In 2016 IEEE 29th International

Conference on Software Engineering Education and

Training (CSEET), pp. 56-65. IEEE, 2016.
[12] Sathya, R., and P. Sudhakar. "Improve Software Quality

using Defect Prediction Models." International Journal of

Engineering and Management Research (IJEMR) 6, no. 6

(2016): 24-29.

[13] Agrawal, Vidisha, and Vishal Shrivastava. "Performance

evaluation of software development effort estimation using

neuro-fuzzy model." Int. J. Emerg. Res. Manag. Technol 4

(2015): 193-199.

[14] Fehlmann, Thomas. "4.4 When to Use COSMIC FFP?

When to Use IFPUG FPA? A Six Sigma View." COSMIC

Function Points: Theory and Advanced Practices (2016):

260.
[15] Sarro, Federica, Alessio Petrozziello, and Mark Harman. "

Multi-objective software effort estimation." In 2016

IEEE/ACM 38th International Conference on Software

Engineering (ICSE), pp. 619-630. IEEE, 2016.

80

85

90

95

100

CM1 JM1 KC1 KC2 PC1

COMPARSION

Accuracy (CNN) Accuracy (Ensemble)

Precision (CNN) Precision (Ensemble)

Recall (CNN) Recall (Ensemble)

file:///C:/omak/Downloads/www.IJARIIT.com

