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ABSTRACT 
 

The P vs. NP problem has haunted scientists’ minds for 

years. It is considered to be one of the most difficult and 

deepest unanswered questions in the field of computer 

science and mathematics. Intellectuals all over the world 

have tried to reach a possible solution for years but there still 

isn’t any consensus regarding the same. In this article, we 

will try to revisit the problem and discuss it using layman 

examples. I will touch all major aspects of computer science 

and mathematics related to the problem. Finally, I will 

conclude by providing a paradox that will cause people to 

think in a completely different way towards the possibility of 

a solution to the problem.  
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1. THE MILLENNIUM PRIZE PROBLEMS 
In the summer of the year 2000, the Clay Mathematics Institute 

gave the world the seven most profound and difficult problems 

in math that ever existed [1]. It announced a prize of 1 million 

dollars to be awarded to the discoverer(s) of the solutions to 

these problems. These problems were named as the 

Millennium Prize problems. The problems are listed as 

follows: 

• Yang-Mills and Mass Gap 

• Riemann Hypothesis 

• P vs. NP Problem 

• Navier-Stokes Equation 

• Hodge Conjecture 

• Poincare Conjecture 

• Birch and Swinnerton-Dyer Conjecture 

 

These problems are so difficult that it is beyond the scope of 

ordinary men to even understand the statement of some 

questions.  The complexity of these problems can be inferred 

from the fact that to date, only one of these problems – the 

Poincare Conjecture - has been solved.  
 

2. POLYNOMIAL AND EXPONENTIAL TIME 
To understand this concept we will be taking real-life 

examples. Consider the situation when you come home from 

grocery shopping and are cross-checking the items you bought 

with the shopping bill. For this process, you take up an item in 

the bill and try finding it in the bag.  For each item there are 

two steps: find it in the bill and then find it in the bag. This 

two-step process can be termed as iteration in the language of 

computer science. Each of these iterations has a loop nested in 
a loop (the two steps that we are following one after the other). 

So for example, we bought 10 items; this implies that there are 

10 goods in the bag and 10 on the shopping list. For each 

iteration, we follow two steps, and hence the total steps 

involved will be of the order 102 = 100.   

 

Now, we visit another scenario where we try to guess a simple 

two-digit pin having numbers from 0-9 as inputs. It might feel 

quite similar to the previous case and that any person who can 

cross-check a grocery list can also crack this code. But in 

reality, it isn’t possible. Let’s breakdown this problem. In the 
beginning, we might see that there are two spaces and each 

takes 10 inputs. So the total number of permutations possible 

would be 102=100. But as we go down to computational levels 

we find that in order to guess one of these possible solutions, 

the algorithm goes through a lot more steps than just 100. 

While guessing, the program fixes one number in the first 

space and iterates through each of the 10 numbers in the 

second space. This process is repeated 10 times. Therefore, the 

total steps involved will be in the order of 1010.  

 

What made the two problems different?   
On carefully comparing and generalizing the two situations we 

find this that when we increase the input size in the first case, 

the number of loops remains constant, and only the number of 

iteration increases. This, therefore, can be expressed in the 

form of  ‘nk’, where n is the input size and k is a constant 

quantity. But as we come down to the second problem, we find 

that on increasing the number of inputs, the number of nested 

loops grows as well. This can be expressed in the form of ‘kn’, 

where n is the input size and k is a constant quantity.  

 

In the world of computer science, time is measured, not in 

absolute quantities like seconds, but in relative units of the 
number of machine operations required to perform a task. The 

first type of problem is an example of Polynomial time (nk) and 

the second type of problem is an example of Exponential time 

(kn). The polynomial time problems are those which are 

considered to be solved within a reasonable amount of time. In 

contrast, exponential time problems are those which, even with 
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small sizes of inputs, are impossible for the fastest and most 

efficient computers to solve. 

 

 
Fig. 1: Graphs of Exponential, Polynomial and Linear 

Time [20] 

 

On plotting graphs for comparing linear time, polynomial time, 

and exponential time, we find that the slope of exponential 

time is much steeper than those of linear (n) and polynomial 

time [15]. 

 

3. P AND NP PROBLEMS  
Before getting into the classes of complexity problems, we will 

first review the concept of decision problems. 

 

A decision problem is one that returns either a ‘yes’ or ‘no’ as 

an answer. All problems can be reduced to decision problems. 

Even problems like sorting a group of numbers in ascending or 

descending order can also be expressed as a decision problem. 

Are the numbers sorted? There can be numerous decision 

problems made for the same problem. Solving the real 

problem, i.e. sorting, is much more difficult than the decision 
problems. But in order to solve the decision problems 

regarding sorting, we need to complete the sorting first. When 

a decision problem is solved, it is considered to be decided 

rather than solved. 

 

Computer scientists have always tried to come out with 

algorithms to solve all the problems that exist in the world. 

Initially many problems had solutions that were almost 

impossible to be carried out even by a computer because of the 

time these algorithms needed. But soon enough, faster and 

more efficient programs were developed and the old ones were 

discarded. We can take the example of sorting again. Initially, 
algorithms like bubble sort (which were indeed fast) existed. 

Bubble sort had a time complexity of ‘n2’. But soon even a 

faster method of sorting, the merge sort was developed which 

had a time complexity of ‘n log(n)’. There is always a search 

for algorithms that can sort with a time complexity of ‘n’. But 

from this, we get to know that with time, faster and more 

efficient algorithms are discovered for the same problem. 

 

With the increase in the number of algorithms, people soon 

realized that all of them could be categorized into specific 

categories: algorithms that were fast and could be solved in a 
reasonable amount of time and algorithms which were very 

slow and could never be solved in a reasonable time. There 

was also a class of problems which was considered completely 

unsolvable. We will be looking at each of them in detail. 

 

3.1 Polynomial time problems – P 

P was considered to be a class of all problems that could be 

solved in polynomial time. For example, addition and 

subtraction fall in the P category of problems. By formal 

definition, P is defined as the class of decision algorithms 

which can be ‘decided’ in polynomial time. These are all the 

decision problems that have algorithms fast enough to return a 

‘yes’ or ‘no’ as an answer in a reasonable amount of time. 
 

3.2 Non-Deterministic Polynomial time problems – NP 

Consider a riddle. It may seem difficult to solve, but once the 

answer is given, it is easy to verify. NP is similar. NP is the 

class of decision problems that cannot be solved in polynomial 

time. But given a solution to these problems, there are 

algorithms that can verify the answer in polynomial time. For 

example, solving a 1000 x 1000 Sudoku grid. It might seem 

impossible, even for the most efficient computers. But once the 

solution is given, it can be easily verified within polynomial 

time.  

 
3.3 Exponential time problems 

Consider chess. How to determine which is the best move to 

make? Can the computers determine it?   

 

We have seen computers beating chess grandmasters. This 

should be enough to make us believe that computers indeed 

can predict the next best move. Or is it? 

 

Let’s find out by first determining how many possible games 

are there in chess [14]. In the 1950s, Claude Shannon gave 

Shannon’s number which estimated the number of games in 
chess. He considered that in each situation in the game, a 

player has about 30 legal moves (plys-a half move) on an 

average. Assuming a game to be of 40 moves he estimated that 

there are 10120 variations of the game of chess that are possible.  

This was a pretty rough estimate but even by these standards, if 

the fastest supercomputer had to determine which move was 

best, it would take millions of years to process each move.  

 

Further down the line we now find that the number of games of 

chess was much more. In the beginning, white has 20 legal 

moves he can make. Then black will have 20 moves for each 

of the 20 variations white started with. That makes 400 moves 
in just one round. Taking it further, the numbers go like this: 

8902 variations in the third move, 197,742 variations in the 

fourth, and so on. The largest chess game is considered to be 

somewhere around 11,800 plys long. By these standards, even 

the number of possible games cannot be predicted let alone the 

next best move. Also, given a move that is said to be the best 

move, we have no algorithm in place that can even verify 

whether this is true in polynomial time. 

 

These are the type of problems which are considered to be 

unsolvable or take exponential time to be solved. Even if we 
have a possible solution to these problems, we lack algorithms 

that could verify the solution within polynomial time.  

 

4. P VS NP  
After the classification of problems in the specific categories, it 

was observed that many important problems that had great 

implications for humans laid in the class of NP. These were 

problems such as the Hamiltonian path problem, circuit 

designing (SAT), etc. which if solved in polynomial time, 
could be greatly beneficial for human society. 

 

Scientists observed another trend as well. They were able to 

achieve faster algorithms for some of the problems in NP and 

reduce them to polynomial time. For example, the question of 

whether a number was prime or not, initially thought to be in 
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NP, was later discovered to be in P. But there remained other 

problems in NP for which no algorithms could be discovered to 

solve them in polynomial time. 

 

Now, since all the problems that can be solved in polynomial 
time, can definitely be verified in polynomial time, P is 

considered to be a subset of NP. But whether or not the 

converse is true has left scholars in confusion for years. 

 

Coming back to the millennium problem, the statement for P 

vs. NP goes as follows: 

‘If it is easy to check that a solution to a problem is correct, is 

it also easy to solve the problem? ’ (see [2]) 

 

This questions the fact that whether all the problems in NP can 

at some point be reduced to the class P, which further comes 

down to the question that- 
 

Is P = NP ? or is P ≠ NP ? 

 

Intellectuals all over the world have tried to devise algorithms 

that would make P equal to NP but there still exists no such 

algorithm. And judging from the fact that the number of 

problems in NP keeps increasing, most believe that P is not 

equal to NP. But even they have failed to prove it.  

 

Now people might think why such a problem is even taken into 

consideration in fields which have many more important 
questions to deal with. The simple reason is if P was, in fact, 

equal to NP, then the way we look at the world will change 

completely. Every problem which could be verified in a 

reasonable amount of time could also be solved in a reasonable 

amount of time. The proofs in math which were based on 

observation could now actually be solved. The very basis of 

encryption and decryption will shatter. Passwords would be 

cracked in seconds. Problems like protein folding which 

required non polynomial time to be solved could easily be done 

in polynomial time, which would further go on to cure cancer. 

The possibilities are just endless. Of course, practically 

speaking all this won’t be done by a computer algorithm. But 
we would then be having the capability of creating ways to 

achieve such feats. 

 

Therefore the quest to find such an algorithm continues as 

scientists hope to solve the P vs. NP problem someday [3]. 

 

5. COMPUTATIONAL COMPLEXITY 
Computational complexity refers to the process of classifying 

problems into complexity classes based on their inherent 
difficulty. Practically speaking, this allows us to understand the 

resource requirement of various algorithms [8] [9]. 

 

We previously discussed two classes: 

P, which is the set of all problems solvable in polynomial time, 

and NP, which is the set of all problems verifiable in 

polynomial time. 

 

There are many more sub-divisions and superclasses present in 

computational complexity. But before defining those, we will 

have to look at some important concepts. 
 

5.1 Satisfiability 

Boolean Satisfiability or SAT is one of the most studied 

problems in the whole of computer science. It is the problem 

for determining whether there exists an interpretation that 

satisfies a given Boolean formula.  

CNF-Satisfiability is a simpler case of satisfiability where the 

Boolean formula has a specific form called ‘Conjuncted 

Normal Form-CNF’. 

 

Terminologies used: 

• ^  - AND 

•  v  - OR 

•  - NOT 
 

The following is an example of a 3CNF-SAT problem [17]: 

 

(XvYvZ) ^ (Xv𝑌vZ) ^ (XvYv𝑍) 

 

Here the expressions inside a bracket are joined at junctions. 

Each of these bracketed expressions is known as a clause 

which is joined with other clauses at conjunctions. The 3CNF-
SAT problem consists of three conjuncted clauses. 

 

The simple basis of the problem is determining for what values 

of X, Y, Z (if any) will the following algorithm return true. For 

a 3CNF-SAT problem, the time required to solve the problem 

is 23 and hence for an nCNF-SAT problem, the time required 

would be in the order of 2n, which lies in the region of 

exponential time. Solving this algorithm is considered to be in 

NP as we can verify the algorithm if the solution is given to us.  

 

5.2 Deterministic and Non-Deterministic Algorithms 

A deterministic polynomial time algorithm is one that gives the 

same output for a given set of inputs. The use of each step of 

the algorithm can be determined. 

 

In contrast, a non deterministic algorithm proceeds in a way 

that even the programmer himself can’t determine. For the 

same set of inputs, it could provide different outputs in 

different runs.  

 

When it was observed that the research to find algorithms to 

solve exponential time algorithms was going unfruitful, 

scientists tried to at least preserve their work for future 
research. So they wrote non-deterministic polynomial time 

algorithms of these exponential time problems. They knew 

how to proceed with a certain problem, but they couldn’t figure 

out how to solve it in polynomial time. So they wrote 

deterministic algorithms with some lines of non-deterministic 

code where the program couldn’t function in polynomial time. 

This way they could preserve their algorithms and when a 

polynomial time deterministic algorithm would be discovered, 

the non-deterministic parts from the code could be replaced.  

 

This is what NP meant- Non Deterministic Polynomial Time 
algorithms [11].  

 

5.3 NP-Hard 

Another approach taken by scientists when no results from 

research were obtained was that of relating problems. This 

meant that instead of trying to solve all the problems in 

exponential time which proved to be unsuccessful, they started 

working on one single problem and relating all other problems 

to the base problem. The base problem was selected to be 

Satisfiability. This problem was called the NP-Hard problem.  

 

The reason for relating all problems with the SAT was because 
this provided the scientists with a focused approach and also if 

they could solve Satisfiability, they could solve all other 

problems related to it. The method used for relating them was 

called reduction. Reduction meant that: 
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If satisfiability could be reduced to a problem Y, i.e. if the 

problem Y was some instance of the problem of satisfiability, 

and this reduction was possible in polynomial time, then the 

problem Y also belonged to the class of NP-Hard problems. 

 
This property was also transitive. This meant that if 

satisfiability reduces to some problem Y and Y reduces to 

some problem Z and all the reductions take place in 

polynomial time, then Z also belongs to the class of NP-Hard 

problems. This way the list to NP-Hard started growing at a 

tremendous rate and soon enough all the major hard problems 

could be related using reduction. 

 

5.4 NP-Complete 

If an NP-Hard problem has a non-deterministic polynomial 

time algorithm, then the problem is said to be NP-Complete. 

Satisfiability has a proven non-deterministic polynomial time 
algorithm and hence is considered to be NP-Complete. This 

further infers that if a problem is reducible to satisfiability and 

has a non-deterministic polynomial time algorithm associated 

with it, then the problem also belongs to NP-Complete. 

 

NP-Complete problems are considered to be the hardest 

problems in the class of NP. They are all related and hence 

solving even one of them would cause the class to instantly 

collapse and make P=NP.  

 

In complexity theory, the Cook-Levin theorem states that any 
problem in NP can be reduced to polynomial time to the 

Boolean satisfiability problem [7]. This further goes on to say 

that if a deterministic algorithm can be discovered for 

Satisfiability, then every NP problem can be solved by a 

deterministic polynomial time algorithm. 

 

So interestingly, the algorithm which could make solving 

Sudoku easier could also help in fast protein folding. 

 

5.5 Major problems in NP-Complete 

 Some of the well known NP-Complete problems are given 

below [6]: 

• Boolean Satisfiability Problem(SAT) 

• Knapsack Problem – It is a type of optimization problem in 

which we are given certain weights having different known 

values. We need to put a certain number of these weights in a 

container such as to maximize the weight of the container, 

without exceeding the given limit. 

• Hamiltonian Path Problem – A Hamiltonian path is one in 

which each vertex of a given set of vertices is touched one 

and only one time. The Hamiltonian path problem deals with 

determining whether or not a Hamiltonian path exists in a 

graph. 

• Traveling Salesman Problem – It is another example of an 

optimization problem and also one of the most relatable ones 

for the general public. It basically questions that given a list 

of cities and the distances between each pair of cities, what is 

the shortest possible route that visits each city and returns to 

the origin city? Solving this problem would make traveling 

for a salesman much easier. 
 

The other important problems in NP-Complete are: 

• Graph Coloring Problem  

• Subset Sum Problem  

• Subgraph Isomorphism Problem  

• Independent Set Problem  

• Clique Problem  

• Vertex Cover Problem  

• Dominating Set Problem  

 

5.6 Final Overview of Computational Complexity 

Over time, the complexity classes have grown to be much 

more complicated. The P vs. NP problem might be the one 
attracting the most attention, but there are even more vast 

complexity classes containing more difficult problems [10]. 

 

 
Fig. 2: Computational Complexity Classes [19] 

 

The diagram shows many of these classes starting from P and 

extending far and wide. We will be defining each of them in 

brief: 

• P is the class containing all the problems which can be solved 

by a deterministic algorithm in polynomial time. 

• NP is the class containing all the problems which can be 

solved by a non-deterministic algorithm in Polynomial time. 

• NP-Hard is the class containing all difficult problems which 

could be expressed as an instance of SAT. 

• NP-Complete is the region of intersection between NP-Hard 

and NP. 

• There is also another category of NP known as co-NP, which 

consists of decision problems where it is easier to prove one 

of the two possibilities as false and eliminate. 

• Beyond NP, there are classes such as EXP, which represents 

exponential time. 

• P Space represents the problems that require unlimited time 

to be solved but use only a polynomial amount of space. 

• BPP (Bounded error Probabilistic Polynomial time) consists 

of problems that have polynomial time randomized 

algorithms as solutions. P is considered to be a subset of BPP 

[5]. 

• The quantum computing analog of BPP is BQP (Bounded 

error Quantum Polynomial time) [4]. 

• R is the class of all decision problems solvable in finite time. 

 

The list just keeps growing. There are many smaller classes 

and groups present all over the complexity diagram. Many of 

the classes turn out to be infinite hierarchies of problems, with 
each one consisting of more problems than the ones within it. 

Many classes are thought to be the same and believed to 

collapse into each other. No one knows much except for the 

fact that there must be someplace where there would be a break 

between classes. There are also some problems which are yet 

to be solved like predicting the best move in chess, or are 

proven to be unsolvable like the famous Halting problem (the 

problem of determining, from a description of an arbitrary 

computer program and an input, whether the program will 

finish running, or continue to run forever [16].) 

 

This list might be as endless as the problems themselves, or 
they might all collapse into one.  
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6. P VS NP AS AN NP PROBLEM 
The P vs. NP problem is a proof in itself. It is a decision 

problem having two possibilities. Either P = NP or P ≠ NP. 
 

Though most scientists believe that P ≠ NP for the sole reason 

that if P =NP was true, it would have been proved by now, due 

to the constant efforts of intellectuals. But this can be seen 

differently as well. Even after decades of research scientists 

still haven’t been able to prove P ≠ NP [13]. 

 

So, just like any decision problem, both these possibilities have 

equal chances of occurring. It was further observed that it 

would be much easier to prove one of the two possibilities as 

wrong rather than proving any of them as right. So P vs. NP 
actually belonged to the class of Co-NP which is a subset of 

NP itself.  

 

Therefore, the P vs. NP problem was indeed an NP problem in 

itself. 

 

7. PARADOX  
 P vs. NP was always seen as a problem that would have a 

definite answer. But the point that the problem itself can be 
seen as a paradox is what I put forward as a hypothesis. From 

this point on, I shall be providing the paradoxical outlook of 

the P vs. NP problem. 

 

Remember the P vs. NP problem can only be solved when 

either P = NP or P ≠ NP. Assume a situation in which a 

deterministic algorithm was found to solve all the problems in 

NP in polynomial time. That would maybe be termed as one of 

the greatest discoveries for human society. Scientists would be 

this close to solving the P vs. NP problem. Or would they be? 

 

Even if all the problems in NP come down to P, there would 
still be one problem remaining in the class of NP, i.e. the P vs. 

NP problem itself. Since P won’t be equal to NP unless both 

classes of P and NP collapse into one, this would imply that 

unless the P vs. NP problem is solved in polynomial time using 

a deterministic algorithm, P vs. NP problem won’t be included 

in the class of P, and hence P=NP won’t be possible. This 

means that out of the two possibilities in the P vs. NP problem, 

one is eliminated. The only other option remaining is  

 

P ≠ NP. 

 
What did we just do? We just proved one of the two 

possibilities of the P vs. NP problem to be true by eliminating 

the only other option available. This means we just solved the 

P vs. NP problem.  

 

Taking it even further, since P vs. NP was just solved in 

polynomial time, the P vs. NP problem would now be included 

in the class of P. This means that the only problem which 

remained out of the sphere of P and inside NP, got included 

inside P. So, we can now say that the classes of P and NP are 

the same ones.  

 
We just proved P = NP. This means we solved the P vs. NP 

problem again. 

 

Therefore, P is both equal to NP and not equal to NP at the 

same time. We again come back to the beginning having two 

possibilities of a decision problem that have an equal 

probability of being true. This means the P vs. NP problem is 

actually not solved. 

In the language of superposition, it would mean that that the 

problem would both be solved and unsolved at the same time. 

This creates a paradoxical situation. 

 

8. CONCLUSION 
People might settle down for P ≠ NP after some years. Or 

maybe if we are fortunate enough, we would have made P = 

NP. But no matter what happens, the fact that the P vs. NP 

problem is a paradox in itself cannot be denied. The problem 

listed by the Clay Mathematics Institute actually has no 

definite solution but just paradoxical assumptions. It would 

remain as a Millennium problem forever. Though practically 

speaking, the quest to find a possible solution would benefit 

mankind greatly. But I believe that the P vs. NP problem 
would soon be termed as the P vs. NP PARADOX. 
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