
Pati Swostik; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |491

ISSN: 2454-132X

Impact factor: 6.078
(Volume 6, Issue 4)

Available online at: https://www.ijariit.com

P VERSUS NP PARADOX

Swostik Pati

swostikpati@gmail.com

Delhi Public School, Navi Mumbai, Maharashtra

ABSTRACT

The P vs. NP problem has haunted scientists’ minds for

years. It is considered to be one of the most difficult and

deepest unanswered questions in the field of computer

science and mathematics. Intellectuals all over the world

have tried to reach a possible solution for years but there still

isn’t any consensus regarding the same. In this article, we

will try to revisit the problem and discuss it using layman

examples. I will touch all major aspects of computer science

and mathematics related to the problem. Finally, I will

conclude by providing a paradox that will cause people to

think in a completely different way towards the possibility of

a solution to the problem.

Keywords: Polynomial Time, Computational complexity,

Non-deterministic and deterministic algorithms, Conjecture,

etc.

1. THE MILLENNIUM PRIZE PROBLEMS
In the summer of the year 2000, the Clay Mathematics Institute

gave the world the seven most profound and difficult problems

in math that ever existed [1]. It announced a prize of 1 million

dollars to be awarded to the discoverer(s) of the solutions to

these problems. These problems were named as the

Millennium Prize problems. The problems are listed as

follows:

• Yang-Mills and Mass Gap

• Riemann Hypothesis

• P vs. NP Problem

• Navier-Stokes Equation

• Hodge Conjecture

• Poincare Conjecture

• Birch and Swinnerton-Dyer Conjecture

These problems are so difficult that it is beyond the scope of

ordinary men to even understand the statement of some

questions. The complexity of these problems can be inferred

from the fact that to date, only one of these problems – the

Poincare Conjecture - has been solved.

2. POLYNOMIAL AND EXPONENTIAL TIME
To understand this concept we will be taking real-life

examples. Consider the situation when you come home from

grocery shopping and are cross-checking the items you bought

with the shopping bill. For this process, you take up an item in

the bill and try finding it in the bag. For each item there are

two steps: find it in the bill and then find it in the bag. This

two-step process can be termed as iteration in the language of

computer science. Each of these iterations has a loop nested in
a loop (the two steps that we are following one after the other).

So for example, we bought 10 items; this implies that there are

10 goods in the bag and 10 on the shopping list. For each

iteration, we follow two steps, and hence the total steps

involved will be of the order 102 = 100.

Now, we visit another scenario where we try to guess a simple

two-digit pin having numbers from 0-9 as inputs. It might feel

quite similar to the previous case and that any person who can

cross-check a grocery list can also crack this code. But in

reality, it isn’t possible. Let’s breakdown this problem. In the
beginning, we might see that there are two spaces and each

takes 10 inputs. So the total number of permutations possible

would be 102=100. But as we go down to computational levels

we find that in order to guess one of these possible solutions,

the algorithm goes through a lot more steps than just 100.

While guessing, the program fixes one number in the first

space and iterates through each of the 10 numbers in the

second space. This process is repeated 10 times. Therefore, the

total steps involved will be in the order of 1010.

What made the two problems different?
On carefully comparing and generalizing the two situations we

find this that when we increase the input size in the first case,

the number of loops remains constant, and only the number of

iteration increases. This, therefore, can be expressed in the

form of ‘nk’, where n is the input size and k is a constant

quantity. But as we come down to the second problem, we find

that on increasing the number of inputs, the number of nested

loops grows as well. This can be expressed in the form of ‘kn’,

where n is the input size and k is a constant quantity.

In the world of computer science, time is measured, not in

absolute quantities like seconds, but in relative units of the
number of machine operations required to perform a task. The

first type of problem is an example of Polynomial time (nk) and

the second type of problem is an example of Exponential time

(kn). The polynomial time problems are those which are

considered to be solved within a reasonable amount of time. In

contrast, exponential time problems are those which, even with

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V6I4-1341
mailto:swostikpati@gmail.com

Pati Swostik; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |492

small sizes of inputs, are impossible for the fastest and most

efficient computers to solve.

Fig. 1: Graphs of Exponential, Polynomial and Linear

Time [20]

On plotting graphs for comparing linear time, polynomial time,

and exponential time, we find that the slope of exponential

time is much steeper than those of linear (n) and polynomial

time [15].

3. P AND NP PROBLEMS
Before getting into the classes of complexity problems, we will

first review the concept of decision problems.

A decision problem is one that returns either a ‘yes’ or ‘no’ as

an answer. All problems can be reduced to decision problems.

Even problems like sorting a group of numbers in ascending or

descending order can also be expressed as a decision problem.

Are the numbers sorted? There can be numerous decision

problems made for the same problem. Solving the real

problem, i.e. sorting, is much more difficult than the decision
problems. But in order to solve the decision problems

regarding sorting, we need to complete the sorting first. When

a decision problem is solved, it is considered to be decided

rather than solved.

Computer scientists have always tried to come out with

algorithms to solve all the problems that exist in the world.

Initially many problems had solutions that were almost

impossible to be carried out even by a computer because of the

time these algorithms needed. But soon enough, faster and

more efficient programs were developed and the old ones were

discarded. We can take the example of sorting again. Initially,
algorithms like bubble sort (which were indeed fast) existed.

Bubble sort had a time complexity of ‘n2’. But soon even a

faster method of sorting, the merge sort was developed which

had a time complexity of ‘n log(n)’. There is always a search

for algorithms that can sort with a time complexity of ‘n’. But

from this, we get to know that with time, faster and more

efficient algorithms are discovered for the same problem.

With the increase in the number of algorithms, people soon

realized that all of them could be categorized into specific

categories: algorithms that were fast and could be solved in a
reasonable amount of time and algorithms which were very

slow and could never be solved in a reasonable time. There

was also a class of problems which was considered completely

unsolvable. We will be looking at each of them in detail.

3.1 Polynomial time problems – P

P was considered to be a class of all problems that could be

solved in polynomial time. For example, addition and

subtraction fall in the P category of problems. By formal

definition, P is defined as the class of decision algorithms

which can be ‘decided’ in polynomial time. These are all the

decision problems that have algorithms fast enough to return a

‘yes’ or ‘no’ as an answer in a reasonable amount of time.

3.2 Non-Deterministic Polynomial time problems – NP

Consider a riddle. It may seem difficult to solve, but once the

answer is given, it is easy to verify. NP is similar. NP is the

class of decision problems that cannot be solved in polynomial

time. But given a solution to these problems, there are

algorithms that can verify the answer in polynomial time. For

example, solving a 1000 x 1000 Sudoku grid. It might seem

impossible, even for the most efficient computers. But once the

solution is given, it can be easily verified within polynomial

time.

3.3 Exponential time problems

Consider chess. How to determine which is the best move to

make? Can the computers determine it?

We have seen computers beating chess grandmasters. This

should be enough to make us believe that computers indeed

can predict the next best move. Or is it?

Let’s find out by first determining how many possible games

are there in chess [14]. In the 1950s, Claude Shannon gave

Shannon’s number which estimated the number of games in
chess. He considered that in each situation in the game, a

player has about 30 legal moves (plys-a half move) on an

average. Assuming a game to be of 40 moves he estimated that

there are 10120 variations of the game of chess that are possible.

This was a pretty rough estimate but even by these standards, if

the fastest supercomputer had to determine which move was

best, it would take millions of years to process each move.

Further down the line we now find that the number of games of

chess was much more. In the beginning, white has 20 legal

moves he can make. Then black will have 20 moves for each

of the 20 variations white started with. That makes 400 moves
in just one round. Taking it further, the numbers go like this:

8902 variations in the third move, 197,742 variations in the

fourth, and so on. The largest chess game is considered to be

somewhere around 11,800 plys long. By these standards, even

the number of possible games cannot be predicted let alone the

next best move. Also, given a move that is said to be the best

move, we have no algorithm in place that can even verify

whether this is true in polynomial time.

These are the type of problems which are considered to be

unsolvable or take exponential time to be solved. Even if we
have a possible solution to these problems, we lack algorithms

that could verify the solution within polynomial time.

4. P VS NP
After the classification of problems in the specific categories, it

was observed that many important problems that had great

implications for humans laid in the class of NP. These were

problems such as the Hamiltonian path problem, circuit

designing (SAT), etc. which if solved in polynomial time,
could be greatly beneficial for human society.

Scientists observed another trend as well. They were able to

achieve faster algorithms for some of the problems in NP and

reduce them to polynomial time. For example, the question of

whether a number was prime or not, initially thought to be in

file:///C:/omak/Downloads/www.IJARIIT.com

Pati Swostik; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |493

NP, was later discovered to be in P. But there remained other

problems in NP for which no algorithms could be discovered to

solve them in polynomial time.

Now, since all the problems that can be solved in polynomial
time, can definitely be verified in polynomial time, P is

considered to be a subset of NP. But whether or not the

converse is true has left scholars in confusion for years.

Coming back to the millennium problem, the statement for P

vs. NP goes as follows:

‘If it is easy to check that a solution to a problem is correct, is

it also easy to solve the problem? ’ (see [2])

This questions the fact that whether all the problems in NP can

at some point be reduced to the class P, which further comes

down to the question that-

Is P = NP ? or is P ≠ NP ?

Intellectuals all over the world have tried to devise algorithms

that would make P equal to NP but there still exists no such

algorithm. And judging from the fact that the number of

problems in NP keeps increasing, most believe that P is not

equal to NP. But even they have failed to prove it.

Now people might think why such a problem is even taken into

consideration in fields which have many more important
questions to deal with. The simple reason is if P was, in fact,

equal to NP, then the way we look at the world will change

completely. Every problem which could be verified in a

reasonable amount of time could also be solved in a reasonable

amount of time. The proofs in math which were based on

observation could now actually be solved. The very basis of

encryption and decryption will shatter. Passwords would be

cracked in seconds. Problems like protein folding which

required non polynomial time to be solved could easily be done

in polynomial time, which would further go on to cure cancer.

The possibilities are just endless. Of course, practically

speaking all this won’t be done by a computer algorithm. But
we would then be having the capability of creating ways to

achieve such feats.

Therefore the quest to find such an algorithm continues as

scientists hope to solve the P vs. NP problem someday [3].

5. COMPUTATIONAL COMPLEXITY
Computational complexity refers to the process of classifying

problems into complexity classes based on their inherent
difficulty. Practically speaking, this allows us to understand the

resource requirement of various algorithms [8] [9].

We previously discussed two classes:

P, which is the set of all problems solvable in polynomial time,

and NP, which is the set of all problems verifiable in

polynomial time.

There are many more sub-divisions and superclasses present in

computational complexity. But before defining those, we will

have to look at some important concepts.

5.1 Satisfiability

Boolean Satisfiability or SAT is one of the most studied

problems in the whole of computer science. It is the problem

for determining whether there exists an interpretation that

satisfies a given Boolean formula.

CNF-Satisfiability is a simpler case of satisfiability where the

Boolean formula has a specific form called ‘Conjuncted

Normal Form-CNF’.

Terminologies used:

• ^ - AND

• v - OR

• - NOT

The following is an example of a 3CNF-SAT problem [17]:

(XvYvZ) ^ (Xv𝑌vZ) ^ (XvYv𝑍)

Here the expressions inside a bracket are joined at junctions.

Each of these bracketed expressions is known as a clause

which is joined with other clauses at conjunctions. The 3CNF-
SAT problem consists of three conjuncted clauses.

The simple basis of the problem is determining for what values

of X, Y, Z (if any) will the following algorithm return true. For

a 3CNF-SAT problem, the time required to solve the problem

is 23 and hence for an nCNF-SAT problem, the time required

would be in the order of 2n, which lies in the region of

exponential time. Solving this algorithm is considered to be in

NP as we can verify the algorithm if the solution is given to us.

5.2 Deterministic and Non-Deterministic Algorithms

A deterministic polynomial time algorithm is one that gives the

same output for a given set of inputs. The use of each step of

the algorithm can be determined.

In contrast, a non deterministic algorithm proceeds in a way

that even the programmer himself can’t determine. For the

same set of inputs, it could provide different outputs in

different runs.

When it was observed that the research to find algorithms to

solve exponential time algorithms was going unfruitful,

scientists tried to at least preserve their work for future
research. So they wrote non-deterministic polynomial time

algorithms of these exponential time problems. They knew

how to proceed with a certain problem, but they couldn’t figure

out how to solve it in polynomial time. So they wrote

deterministic algorithms with some lines of non-deterministic

code where the program couldn’t function in polynomial time.

This way they could preserve their algorithms and when a

polynomial time deterministic algorithm would be discovered,

the non-deterministic parts from the code could be replaced.

This is what NP meant- Non Deterministic Polynomial Time
algorithms [11].

5.3 NP-Hard

Another approach taken by scientists when no results from

research were obtained was that of relating problems. This

meant that instead of trying to solve all the problems in

exponential time which proved to be unsuccessful, they started

working on one single problem and relating all other problems

to the base problem. The base problem was selected to be

Satisfiability. This problem was called the NP-Hard problem.

The reason for relating all problems with the SAT was because
this provided the scientists with a focused approach and also if

they could solve Satisfiability, they could solve all other

problems related to it. The method used for relating them was

called reduction. Reduction meant that:

file:///C:/omak/Downloads/www.IJARIIT.com

Pati Swostik; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |494

If satisfiability could be reduced to a problem Y, i.e. if the

problem Y was some instance of the problem of satisfiability,

and this reduction was possible in polynomial time, then the

problem Y also belonged to the class of NP-Hard problems.

This property was also transitive. This meant that if

satisfiability reduces to some problem Y and Y reduces to

some problem Z and all the reductions take place in

polynomial time, then Z also belongs to the class of NP-Hard

problems. This way the list to NP-Hard started growing at a

tremendous rate and soon enough all the major hard problems

could be related using reduction.

5.4 NP-Complete

If an NP-Hard problem has a non-deterministic polynomial

time algorithm, then the problem is said to be NP-Complete.

Satisfiability has a proven non-deterministic polynomial time
algorithm and hence is considered to be NP-Complete. This

further infers that if a problem is reducible to satisfiability and

has a non-deterministic polynomial time algorithm associated

with it, then the problem also belongs to NP-Complete.

NP-Complete problems are considered to be the hardest

problems in the class of NP. They are all related and hence

solving even one of them would cause the class to instantly

collapse and make P=NP.

In complexity theory, the Cook-Levin theorem states that any
problem in NP can be reduced to polynomial time to the

Boolean satisfiability problem [7]. This further goes on to say

that if a deterministic algorithm can be discovered for

Satisfiability, then every NP problem can be solved by a

deterministic polynomial time algorithm.

So interestingly, the algorithm which could make solving

Sudoku easier could also help in fast protein folding.

5.5 Major problems in NP-Complete

 Some of the well known NP-Complete problems are given

below [6]:

• Boolean Satisfiability Problem(SAT)

• Knapsack Problem – It is a type of optimization problem in

which we are given certain weights having different known

values. We need to put a certain number of these weights in a

container such as to maximize the weight of the container,

without exceeding the given limit.

• Hamiltonian Path Problem – A Hamiltonian path is one in

which each vertex of a given set of vertices is touched one

and only one time. The Hamiltonian path problem deals with

determining whether or not a Hamiltonian path exists in a

graph.

• Traveling Salesman Problem – It is another example of an

optimization problem and also one of the most relatable ones

for the general public. It basically questions that given a list

of cities and the distances between each pair of cities, what is

the shortest possible route that visits each city and returns to

the origin city? Solving this problem would make traveling

for a salesman much easier.

The other important problems in NP-Complete are:

• Graph Coloring Problem

• Subset Sum Problem

• Subgraph Isomorphism Problem

• Independent Set Problem

• Clique Problem

• Vertex Cover Problem

• Dominating Set Problem

5.6 Final Overview of Computational Complexity

Over time, the complexity classes have grown to be much

more complicated. The P vs. NP problem might be the one
attracting the most attention, but there are even more vast

complexity classes containing more difficult problems [10].

Fig. 2: Computational Complexity Classes [19]

The diagram shows many of these classes starting from P and

extending far and wide. We will be defining each of them in

brief:

• P is the class containing all the problems which can be solved

by a deterministic algorithm in polynomial time.

• NP is the class containing all the problems which can be

solved by a non-deterministic algorithm in Polynomial time.

• NP-Hard is the class containing all difficult problems which

could be expressed as an instance of SAT.

• NP-Complete is the region of intersection between NP-Hard

and NP.

• There is also another category of NP known as co-NP, which

consists of decision problems where it is easier to prove one

of the two possibilities as false and eliminate.

• Beyond NP, there are classes such as EXP, which represents

exponential time.

• P Space represents the problems that require unlimited time

to be solved but use only a polynomial amount of space.

• BPP (Bounded error Probabilistic Polynomial time) consists

of problems that have polynomial time randomized

algorithms as solutions. P is considered to be a subset of BPP

[5].

• The quantum computing analog of BPP is BQP (Bounded

error Quantum Polynomial time) [4].

• R is the class of all decision problems solvable in finite time.

The list just keeps growing. There are many smaller classes

and groups present all over the complexity diagram. Many of

the classes turn out to be infinite hierarchies of problems, with
each one consisting of more problems than the ones within it.

Many classes are thought to be the same and believed to

collapse into each other. No one knows much except for the

fact that there must be someplace where there would be a break

between classes. There are also some problems which are yet

to be solved like predicting the best move in chess, or are

proven to be unsolvable like the famous Halting problem (the

problem of determining, from a description of an arbitrary

computer program and an input, whether the program will

finish running, or continue to run forever [16].)

This list might be as endless as the problems themselves, or
they might all collapse into one.

file:///C:/omak/Downloads/www.IJARIIT.com

Pati Swostik; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |495

6. P VS NP AS AN NP PROBLEM
The P vs. NP problem is a proof in itself. It is a decision

problem having two possibilities. Either P = NP or P ≠ NP.

Though most scientists believe that P ≠ NP for the sole reason

that if P =NP was true, it would have been proved by now, due

to the constant efforts of intellectuals. But this can be seen

differently as well. Even after decades of research scientists

still haven’t been able to prove P ≠ NP [13].

So, just like any decision problem, both these possibilities have

equal chances of occurring. It was further observed that it

would be much easier to prove one of the two possibilities as

wrong rather than proving any of them as right. So P vs. NP
actually belonged to the class of Co-NP which is a subset of

NP itself.

Therefore, the P vs. NP problem was indeed an NP problem in

itself.

7. PARADOX
 P vs. NP was always seen as a problem that would have a

definite answer. But the point that the problem itself can be
seen as a paradox is what I put forward as a hypothesis. From

this point on, I shall be providing the paradoxical outlook of

the P vs. NP problem.

Remember the P vs. NP problem can only be solved when

either P = NP or P ≠ NP. Assume a situation in which a

deterministic algorithm was found to solve all the problems in

NP in polynomial time. That would maybe be termed as one of

the greatest discoveries for human society. Scientists would be

this close to solving the P vs. NP problem. Or would they be?

Even if all the problems in NP come down to P, there would
still be one problem remaining in the class of NP, i.e. the P vs.

NP problem itself. Since P won’t be equal to NP unless both

classes of P and NP collapse into one, this would imply that

unless the P vs. NP problem is solved in polynomial time using

a deterministic algorithm, P vs. NP problem won’t be included

in the class of P, and hence P=NP won’t be possible. This

means that out of the two possibilities in the P vs. NP problem,

one is eliminated. The only other option remaining is

P ≠ NP.

What did we just do? We just proved one of the two

possibilities of the P vs. NP problem to be true by eliminating

the only other option available. This means we just solved the

P vs. NP problem.

Taking it even further, since P vs. NP was just solved in

polynomial time, the P vs. NP problem would now be included

in the class of P. This means that the only problem which

remained out of the sphere of P and inside NP, got included

inside P. So, we can now say that the classes of P and NP are

the same ones.

We just proved P = NP. This means we solved the P vs. NP

problem again.

Therefore, P is both equal to NP and not equal to NP at the

same time. We again come back to the beginning having two

possibilities of a decision problem that have an equal

probability of being true. This means the P vs. NP problem is

actually not solved.

In the language of superposition, it would mean that that the

problem would both be solved and unsolved at the same time.

This creates a paradoxical situation.

8. CONCLUSION
People might settle down for P ≠ NP after some years. Or

maybe if we are fortunate enough, we would have made P =

NP. But no matter what happens, the fact that the P vs. NP

problem is a paradox in itself cannot be denied. The problem

listed by the Clay Mathematics Institute actually has no

definite solution but just paradoxical assumptions. It would

remain as a Millennium problem forever. Though practically

speaking, the quest to find a possible solution would benefit

mankind greatly. But I believe that the P vs. NP problem
would soon be termed as the P vs. NP PARADOX.

9. ACKNOWLEDGEMENT
I would like to thank my parents; Dr. Suvendu Kumar Pati and

Mrs. Jyotirupa Kabi, for always believing in me and giving me

hope to complete this research paper. I would also like to thank

my younger brother, Ritwik Pati, for encouraging me and

keeping me motivated to finish the paper. I also thank all my

teachers who have made me capable enough to understand
such a difficult problem and present to the world my views

about the same. Lastly, I thank all my friends who made me

believe in myself.

10. REFERENCES
[1] The Clay Mathematics Institute’s web page for

Millennium problems.

https://www.claymath.org/millennium-problems

[2] The official statement for the P vs. NP problem.
https://www.claymath.org/sites/default/files/pvsnp.pdf

[3] The Status of the P versus NP problem

http://people.cs.uchicago.edu/~fortnow/papers/pnp-

cacm.pdf

[4] BQP Wikipedia page

https://en.wikipedia.org/wiki/BQP

[5] BPP Wikipedia page

https://en.wikipedia.org/wiki/BPP_(complexity)

[6] NP- Completeness Wikipedia page

https://en.wikipedia.org/wiki/NP-completeness

[7] Cook-Levin Theorem

https://en.wikipedia.org/wiki/Cook%E2%80%93Levin_th
eorem#Contributions

[8] Computational Complexity Article by Stanford

University

https://plato.stanford.edu/entries/computational-

complexity/

[9] MIT lecture on Complexity

https://www.youtube.com/watch?v=mr1FMrwi6Ew&t=9

77s

[10] P vs. NP and the Computational Complexity Zoo By

Hackerdashery

https://www.youtube.com/watch?v=YX40hbAHx3s
[11] NP-Hard and NP-Complete ProblemsBy Abdul Bari

https://www.youtube.com/watch?v=e2cF8a5aAhE

[12] P vs. NP - An Introduction By Undefined Behavior

https://www.youtube.com/watch?v=OY41QYPI8cw&t=9

8s

[13] Donald Knuth: P=NP | AI Podcast Clips By Lex Fridman

https://www.youtube.com/watch?v=XDTOs8MgQfg

[14] How many chess games are possible? By Numberphile

https://www.youtube.com/watch?v=Km024eldY1A

[15] What is complexity theory? (P vs. NP explained visually)

By Art of the Problem

file:///C:/omak/Downloads/www.IJARIIT.com

Pati Swostik; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |496

https://www.youtube.com/watch?v=u2DLlNQiPB4

[16] The Turing & the Halting Problem By Computerphile

https://www.youtube.com/watch?v=macM_MtS_w4

[17] JavaTpoint’s web page for 3CNF SAT.

https://www.javatpoint.com/daa-3-cnf-satisfiability
[18] Boolean Satisfiability Wikipedia page.

https://en.wikipedia.org/wiki/Boolean_satisfiability_probl

em

[19] MITOpencourseware web page

https://ocw.aprende.org/courses/mathematics/18-404j-

theory-of-computation-fall-2006/

[20] What is complexity theory? (P vs. NP explained visually)

By Art of the Problem – time stamp at 5:21

 (Diagram)
https://www.youtube.com/watch?v=u2DLlNQiPB4

BIOGRAPHY

Swostik Pati

High School Student

Delhi Public School, Navi Mumbai, Maharashtra

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.youtube.com/watch?v=u2DLlNQiPB4

