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ABSTRACT 
 

A radial radio labelling 𝒉, of a connected graph 𝑮 = (𝑽, 𝑬) is an assignment of non-negative integers to the vertices of G 

satisfying the radial radio condition 𝒅(𝒖, 𝒗) + |𝒉(𝒖)−𝒉(𝒗)| ≥ 𝟏 + 𝒓𝒂𝒅(𝑮), for any two distinct vertices 𝒖, 𝒗 ∈ 𝑽(𝑮),  where 

𝒓𝒂𝒅(𝑮) denote the radius of the graph G. The span of a radial radio labeling h is the largest integer in the range of h and is 

denoted by 𝒓𝒓(𝒉). The radial radio number of 𝑮, denoted by 𝒓𝒓(𝑮), is the minimum span taken over all radial radio labelings 

of 𝑮. In this paper, we have obtained the radial radio number of certain wheel related graphs such as the graph KDW(r), 

𝑯𝑾(𝒓), 𝑺𝑾(𝒓), uniform 𝒏 −wheel split graph and uniform 𝒓 −cyclic split graphs.  

 

Keywords: Labelling, Radial Radio labelling, Radial radio number, Uniform n-wheel spilt graphs, uniform r-cyclic split 

graphs. 

1. INTRODUCTION 
In the early 1980’s, Hale [7] introduced a Graph theory model for radio frequency assignment problems. In 2001 Chartrand et al. 

[1] were motivated by regulations for channel assignments of FM radio stations to introduce radio labelling for connected graphs. 

A radio labelling of a connected graph G is an injection h  from the vertices of  G to the natural numbers such that 𝑑(𝑢, 𝑤) +
|ℎ(𝑢) − ℎ(𝑤)| ≥ 1 + 𝑑𝑖𝑎𝑚(𝐺) for every pair of vertices u and w of G. The radio number of ℎdenoted by 𝑟𝑛(ℎ), is the maximum 

number assigned to any vertex of 𝐺. The radio number of G, denoted  𝑟𝑛(𝐺), is the minimum value of 𝑟𝑛(ℎ), taken over all 

labellings h of 𝐺. In 2014, Ponraj et.al [5] introduced a variation of radio labelling called radio mean labelling. A radio mean 

labelling of a connected graph G is an injection h  from the vertices of  G to the natural numbers such that 𝑑(𝑢, 𝑤) +

|⌈
ℎ(𝑢)+ℎ(𝑣)

2
⌉| ≥ 1 + 𝑑𝑖𝑎𝑚(𝐺) for every pair of vertices u and w of G. The radio mean number of ℎ denoted by 𝑟𝑛(ℎ), is the 

maximum number assigned to any vertex of 𝐺. The radio mean number of G, denoted  𝑟𝑛(𝐺), is the minimum value of 𝑟𝑛(ℎ), 

taken over all labellings h of 𝐺. In 2017, Hemalatha et.al [3] introduced another labelling called radio geometric mean labelling, 

by replacing the mean condition |⌈
ℎ(𝑢)+ℎ(𝑣)

2
⌉| by geometric mean condition |⌈√ℎ(𝑢)ℎ(𝑣)⌉|. Recently in 2019, Avadayappan et.al 

[6] replace the diameter by radius and introduce a new labelling called radial radio labelling. The formal graph theoretical 

definition is as follows:   

 

A radial radio labelling ℎ, of a connected graph 𝐺 = (𝑉, 𝐸) is an assignment of non-negative integers to the vertices satisfying the 

radial radio condition 𝑑(𝑢, 𝑣) + |ℎ(𝑢)−ℎ(𝑣)|1 + 𝑟𝑎𝑑(𝐺) , for any two distinct vertices 𝑢, 𝑣 ∈ 𝑉(𝐺),  where 𝑟𝑎𝑑(𝐺) denote the 

radius of the graph 𝐺. The span of a radial radio labeling h is the largest integer in the range of 𝑓 and is denoted by 𝑟𝑟(ℎ) The 

radial radio number of 𝐺, denoted by 𝑟𝑟(𝐺) , is the minimum span taken over all radial radio labelling of 𝐺. Avadayappan et.al [6] 

proved that, for any simple connected graph G that 𝑟𝑟(𝐺) ≥ ω(G). For any graph G with 𝑚 ≥ 1, there is a graph 𝐺 with ω = 3 

and 𝑟𝑟(𝐺) = 𝑚 +  𝜔. Also, for any graph G with ω ≥ 4, there exists a graph G with rr(G) = ω + 1.  

 

In this paper, we have obtained the bounds for the radial radio number of certain Uniform cyclic and wheel split graphs. 

 

1.1 Preliminaries 

In this section, we have listed few relevant results and definitions which are used in this paper. 

 

Definition 1: Let 𝐺 be a connected graph and let 𝑣 be a vertex of 𝐺. The eccentricity 𝑒(𝑣)of 𝑣 is the farthest vertex from 𝑣. Thus 

𝑒(𝑣) = max {𝑑(𝑢, 𝑣)∀𝑢 ∈ 𝑉(𝐺). 

 

Definition 2: The diameter of G is the maximum eccentricity of the vertices of G. It is denoted by 𝑑𝑖𝑎𝑚 (𝐺). 
 

Definition 3: The radius of G is the minimum eccentricity of the vertices of G. It is denoted by 𝑟𝑎𝑑(𝐺). 

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V6I4-1249
mailto:jecinthokins@rediffmail.com


Yenoke Kins; International Journal of Advance Research, Ideas and Innovations in Technology 

© 2020, www.IJARIIT.com All Rights Reserved                                                                                         Page |223 

Definition 4: The center of graph G is defined as the set of vertices having eccentricity equal to the radius of the graph G. 

 

Remark 1: For any graph G, 𝑟𝑎𝑑(𝐺) ≤ 𝑒(𝑣) ≤ 𝑑𝑖𝑎𝑚(𝐺) for all vertices 𝑣 ∈ 𝑉(𝐺). 

 

Bharathi et.al [2] and Kins Yenoke [4] were introduced the following wheel related graphs. 

 

Definition 5: [4] Let 𝑥𝑖 , 1 ≤ 𝑖 ≤ 𝑛 be the vertices of the Complete graph 𝐾𝑛. Let 𝑥𝑖 be adjacent to 𝑤𝑖 , 1 ≤ 𝑖 ≤ 𝑛. Subdivide each 

edge 𝑥𝑖𝑤𝑖 by 𝑢𝑖,1 ≤ 𝑖 ≤ 𝑛. Let 𝑊𝑖 be a wheel with hub 𝑤𝑖 . The graph obtained is denoted by 𝐾𝐷𝑊(𝑟), 𝑛 > 6.  

 

Remark 3: The number of vertices in 𝐾𝐷𝑊(𝑟) is 𝑛(𝑟 + 3) and the number of edges is 2𝑛(𝑟 + 1) +
𝑛(𝑛+1)

2
. Also the radius and 

diameter of 𝐾𝐷𝑊(𝑟) are 4 and 7 respectively. The center of the graph is 𝐾𝑛. 

 

Definition 6: [4] Let 𝐻𝑛+1 be the helm with the pendant vertices 𝑢𝑖 , 1 ≤ 𝑖 ≤ 𝑛. Let 𝑊𝑟+1
𝑖 = 𝐶𝑟

𝑖 + 𝐾1 be wheels with hubs 𝑢𝑖, 1 ≤
𝑖 ≤ 𝑛 respectively. The graph constructed is denoted by 𝐻𝑊(𝑟), 𝑛 > 11. 
 

Remark 4: The number of vertices and edges of 𝐻𝑊(𝑟) are 𝑛(𝑟 + 2) + 1 and 2𝑛(𝑟 + 1) + 𝑛 respectively. Its diameter is 6 and 

radius is 4. The center vertex of the inner wheel is the only center of the graph.  

 

Definition 7: [4] Let 𝑤𝑖 , 1 ≤ 𝑖 ≤ 𝑛 be the vertices of a star graph 𝑆𝑛+1with hub at 𝑥. Let 𝑢𝑖 be adjacent to 𝑤𝑖 , 1 ≤ 𝑖 ≤ 𝑛  

respectively. The graph obtained is denoted by 𝑆𝑊(𝑟). The number of vertices in 𝑆𝑊(𝑟) is 𝑛(𝑟 + 2) + 1 and the number of 

edges is 2𝑛(𝑟 + 1). 

 

Remark 5: The diameter of 𝑆𝑊(𝑟) is 6. Also, the center of the graph is a single vertex of radius 3, which is the center of the inner 

star graph 𝑆𝑛+1.  

 

Definition 8: [2] A uniform 𝑟 −cyclic split graph 𝐾𝐶(𝑟) is a graph in which the deletion of 𝑛𝑚𝑟 edges partitions the graph into a 

complete 𝐾𝑛 and 𝑛𝑚 independent cycles of length r. If each of the 𝑛𝑚 cycles of length 𝑟 is shrunk to a point, then the uniform 

𝑟 −cyclic split graph reduces to the standard split graph. There are 𝑘 wheels attached to each vertex of the complete graph. The 

number of vertices and edges are 𝑛(𝑚𝑟 + 1) and  2𝑛𝑚𝑟 +
𝑛(𝑛−1)

2
  respectively. 

 

Remark 6: The diameter and radius of KC(r) are 3 and 2 respectively. 

 

Definition 9: A uniform n-wheel split graph KW(r) is a graph in which the deletion of n edges partitions the graph into a complete 

graph and n independent wheels 𝑊𝑟+1, 𝑛 >  4. This graph can be thought of as a generalization of the standard split graph in the 

sense that the elements of the independent set are replaced by wheels here.  

 

Remark 7: The number of vertices in KW(r) is 𝑛(𝑟 + 2) and the number of edges is 𝑛 (2𝑟 +
𝑛−1

2
+ 1). Further, the radius and 

diameter are 3 and 5 respectively.  

 

1.2 Radial Radio Labelling of 𝑲𝑫𝑾(𝒓), 𝑯𝑾(𝒓), 𝑺𝑾(𝒓) uniform 𝒏 −wheel split graph and uniform 𝒓 −cyclic split graphs 

In this section we have determined the radial radio labelling of certain special wheel related graphs with radius 2, 3 and 4. 

 

Theorem 3.1: The radial radio number of the graph  𝐾𝐷𝑊(𝑟) with radius 4, satisfies 𝑟𝑟(𝐾𝐷𝑊(𝑟)) ≤ 3(𝑟 + 2𝑛), 𝑛 > 4. 

 

Proof: Define a mapping h from the vertex set of 𝐾𝐷𝑊(𝑟) to the set of non-negative integers as follows: 

ℎ(𝑣𝑟(𝑗−1)+2𝑖−1) = 3(𝑖 − 1), 𝑖 = 1,2. . ⌈
𝑟

2
⌉ , 𝑗 = 1,2. . 𝑛, 

 

ℎ(𝑣𝑟(𝑗−1)+2𝑖) = 3 (⌈
𝑟

2
⌉ − 1) + 3𝑖, 𝑖 = 1,2. . ⌊

𝑟

2
⌋ , 𝑗 = 1,2. . 𝑛, 

 

ℎ(𝑥𝑖) = 3(𝑟 − 1) + 4(𝑖 − 1) + 2, ℎ(𝑤𝑖) = 3𝑟 + 4𝑛 − 2,  ℎ(𝑢𝑖) = 3𝑟 + 4 𝑛 + 2𝑖 , 𝑖 = 1,2 … 𝑛. See Fig.1. 

 

Next, we claim that h satisfies the radial radio labelling condition. 

 

That is to prove that 𝑑(𝑢, 𝑤) + | ℎ (𝑢)− ℎ(𝑤)| ≥ 1 + 𝑟𝑎𝑑(𝐾𝐷𝑊(𝑟)) = 5 ∀𝑢, 𝑤 ∈ 𝑉(𝐾𝐷𝑊(𝑟)). 

 

Let u and w be any two vertices in the graph 𝐾𝐷𝑊(𝑟). 

 

Case 1: Suppose u and w lies on the wheel graphs. 

 

Case 1.1: If 𝑢 = 𝑣𝑟(𝑘−1)+2𝑠−1 and 𝑤 = 𝑣𝑟(𝑙−1)+2𝑚−1, 1≤ 𝑘, 𝑙 ≤ 𝑛, 1 ≤ 𝑠 ≠ 𝑚 ≤ ⌈
𝑟

2
⌉, then the distance between them is at least  

2. Also ℎ(𝑢) = 3(𝑠 − 1) and ℎ(𝑤) = 3(𝑚 − 1). Hence, the radial radio labelling condition becomes 𝑑(𝑢, 𝑤) +

 | ℎ (𝑢)− ℎ(𝑤)| ≥ 2 + |3(𝑠 − 1) − (3(𝑚 − 1))| ≥ 2 + 3 = 5, since  𝑠 ≠ 𝑚. 
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Fig. 1: A radial radio labelling of a graph KDW(r) with 𝐫 = 𝟕 and 𝐧 = 𝟒 which attains the bound. 

 

Case 1.2: If 𝑢 = 𝑣𝑟(𝑘−1)+2𝑠 and 𝑤 = 𝑣𝑟(𝑙−1)+2𝑚, 1≤ 𝑘, 𝑙 ≤ 𝑛, 1 ≤ 𝑠 ≠ 𝑚 ≤ ⌊
𝑟

2
⌋, then 𝑑(𝑢, 𝑤) ≥ 2. Also the modulus difference 

between ℎ(𝑢) and ℎ(𝑤) is at least 3(𝑠 − 𝑚) .Therefore,  𝑑(𝑢, 𝑤) +  | ℎ (𝑢)− ℎ(𝑤)| ≥ 2 + 3 = 5, since  𝑠 ≠ 𝑚. 

 

Case 1.3: Let 𝑢 = 𝑣𝑟(𝑘−1)+2𝑠−1 and 𝑤 = 𝑣𝑟(𝑙−1)+2𝑚, then ℎ(𝑢) = 3(𝑠 − 1), 1 ≤ 𝑠 ≤ ⌈
𝑟

2
⌉ and ℎ(𝑤) = 3 (⌈

𝑟

2
⌉ − 1) + 3𝑚, 1 ≤

𝑚 ≤ ⌊
𝑛

2
⌋. Again, the distance between 𝑢 and 𝑤 is either 1, 2 or 7.  

 

When 𝑑(𝑢, 𝑤) = 1, then the  moduls difference between ℎ(𝑢) and ℎ(𝑣) 𝑖𝑠  at least 6, since 𝑛 > 4. Therefore, 𝑑(𝑢, 𝑤) +
 | ℎ (𝑢)− ℎ(𝑤)| ≥ 5. 

 

Also, if 𝑑(𝑢, 𝑤) = 2 𝑜𝑟 7, then |ℎ(𝑢) − ℎ(𝑤)| ≥ 3. Therefore, 𝑑(𝑢, 𝑤) + | ℎ (𝑢)− ℎ(𝑤)| ≥ 2 + 3 = 5. 
 

Case 2: Suppose u and w are any two vertices in the complete graph, then 𝑢 = 𝑥𝑘 and 𝑤 = 𝑥𝑙 , 1≤ 𝑘 ≠ 𝑙 ≤ 𝑛. Also  𝑑(𝑢, 𝑤) = 1 

and ℎ(𝑢) = 3(𝑟 − 1) + 4(𝑘 − 1) + 2, ℎ(𝑢) = 3(𝑟 − 1) + 4(𝑙 − 1) + 2. Therefore, 𝑑(𝑢, 𝑤) + | ℎ (𝑢)− ℎ(𝑤)| ≥ 1 +
| 4(𝑘 − 𝑙)| ≥ 5, since  𝑘 ≠ 𝑙. 
 

Case 3: If u and w are any two vertices in the subdivision of  𝑥𝑖𝑤𝑖, 1 ≤ 𝑖 ≤ 𝑛, then 𝑢 = 𝑢𝑘 and 𝑤 = 𝑢𝑙, 1≤ 𝑘 ≠ 𝑙 ≤ 𝑛. 

 

Here, ℎ(𝑢) = 3𝑟 + 4 𝑛 + 2𝑘 , ℎ(𝑤) = 3𝑟 + 4 𝑛 + 2𝑙 and the distance between them is exactly 3. Hence the radial radio labelling 

condition becomes 𝑑(𝑢, 𝑤) + | ℎ (𝑢)− ℎ(𝑤)| = 3 + | 2(𝑘 − 𝑙)| ≥ 5, since 𝑘 ≠ 𝑙. 
 

Case 4: Suppose 𝑢 and 𝑤 are any two hub vertices of the wheels, then h maps to the same number 3𝑟 + 4𝑛 − 2. But the distance 

between them is always 5. Hence h satisfies the radial radio labelling condition in this case. 

 

Case 5: Let u and w be vertices of the wheel graph and complete graph respectively. Hence, the function values of u and w are 

ℎ(𝑢) = 3(𝑘 − 1) and ℎ(𝑥𝑚) = 3(𝑟 − 1) + 4(𝑚 − 1) + 2 respectively, where 1≤ 𝑘 ≤ 𝑟, 1≤ 𝑚 ≤ 𝑛. Also, the distance between 

the two vertices is equal to 3 or 4. Therefore, | ℎ (𝑢)− ℎ(𝑤)| ≥ 2 and thus the radial radio condition is satisfied. 

 

Case 6: Assuming u is a vertex in any wheel and 𝑤 = 𝑤𝑙 , 1≤ 𝑙 ≤ 𝑛, then the difference in function value is given by |ℎ(𝑢) −
ℎ(𝑤)| = |3(𝑘 − 1) − (3𝑟 + 4𝑛 − 2)|. Also, since 𝑑(𝑢, 𝑤) ≥ 1 and  𝑘 lies between 1 and 𝑟, we get 𝑑(𝑢, 𝑤) +  | ℎ (𝑢)− ℎ(𝑤)| ≥
1 + 4𝑛 − 5 > 5, 𝑠ince 𝑛 > 4. 

 

Case 7: If 𝑢 = 𝑣𝑘 , 1 ≤ 𝑘 ≤ 𝑛𝑟 and 𝑤 = 𝑢𝑙, 1≤ 𝑙 ≤ 𝑛, then 𝑑(𝑢, 𝑤) ≥ 2 and ℎ maps u, w to 3(𝑘 − 1), 3𝑟 + 4 𝑛 + 2𝑙 
respectively. Hence 𝑑(𝑢, 𝑤) +  | ℎ (𝑢)− ℎ(𝑤)| ≥ 2 + 4𝑛 + 2𝑙 − 3 > 5. 
 

Case 8: Suppose 𝑢 is any hub vertex and 𝑤 is any complete graph vertex, then the distance between them is at least 1. Also, 
ℎ(𝑢) = 3𝑟 + 4𝑛 − 2 and ℎ(𝑢𝑖) = 3𝑟 + 4 𝑛 + 2𝑚. Therefore 𝑑(𝑢, 𝑤) + | ℎ (𝑢)− ℎ(𝑤)| ≥ 1 + 4 = 5. 
 

Case 10: Suppose 𝑢 = 𝑥𝑙 is a vertex in the complete graph and 𝑤 = 𝑢𝑚, 1≤ 𝑙, 𝑚 ≤ 𝑛, then 𝑑(𝑢, 𝑤) ≥ 2  and | ℎ (𝑢)− ℎ(𝑤)| ≥ 7. 

𝑑(𝑢, 𝑤) + | ℎ (𝑢)− ℎ(𝑤)| ≥ 9 > 5. 
 

Thus, h is a valid radial radio labelling. 

 

Also, the vertex 𝑢𝑛 attains the maximum value ℎ(𝑢𝑛) = 3𝑟 + 4 𝑛 + 2𝑛 = 3(𝑟 + 2𝑛). Thereby  we are proving the theorem by 

attaining the result 𝑟𝑟(𝐾𝐷𝑊(𝑟)) ≤ 3(𝑟 + 2𝑛), 𝑛 > 4. 
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Theorem 3.2: Let G be a graph HW(r). Then the radial radio number of G satisfies 𝑟𝑟(𝐺) ≤ 2(𝑟 + 𝑛) + 2, 𝑛 > 3. 
 

Proof: First we name the vertices of 𝐶𝑟
𝑖 , 𝑖 = 1,2. . 𝑛  in the graph HW(r) as 𝑣1, 𝑣2 … 𝑣𝑛𝑟 . Next, we name the vertices of the center 

wheel as 𝑤1, 𝑤2 … 𝑤𝑛+1. The remaining vertices are named as in definition 2.6.  

 

Define a mapping ℎ: 𝑉(HW(r)) → 𝑁 ∪ {0} as follows:  

 

ℎ(𝑣𝑟(𝑗−1)+2𝑖−1) = 2𝑖 − 1, 𝑖 = 1,2 … ⌈
𝑟

2
⌉ , 𝑗 = 1,2. . 𝑛, 

 

ℎ(𝑣𝑟(𝑗−1)+2𝑖) = 2 ⌈
𝑟

2
⌉ − 1 + 2𝑖, 𝑖 = 1,2 … ⌊

𝑟

2
⌋ , 𝑗 = 1,2. . 𝑛, 

 

ℎ(𝑤2𝑖−1) = 2(𝑟 + 𝑖) − 1, 𝑖 = 1,2 … ⌈
𝑛

2
⌉, ℎ(𝑤2𝑖) = 2 (𝑟 + ⌈

𝑛

2
⌉) − 1 + 2𝑖, 𝑖 = 1,2 … ⌊

𝑛

2
⌋, ℎ(𝑤𝑛+1) = 0 

 

ℎ(𝑢𝑖) = 2(𝑟 + 𝑛) + 1, 𝑖 = 1,2 … ⌈
𝑛

2
⌉, ℎ(𝑢𝑖) = 2(𝑟 + 𝑛) + 2, 𝑖 = 1,2 … ⌊

𝑛

2
⌋. See Fig. 2 (a). 

 

Theorem 3.3: For any 𝑛 > 1, the radial radio numer of 𝑆𝑊(𝑟)is given by  𝑟𝑟(𝑆𝑊(𝑟)) ≤ 2𝑟 + 3𝑛. 

 

Proof: we name the vertices of 𝑆𝑊(𝑟) as same as the vertices of the graph HW(r).  

 

Define a mapping ℎ: 𝑉(𝑆𝑊(𝑟)) → 𝑁 ∪ {0} as follows:  

 

ℎ(𝑣𝑟(𝑗−1)+2𝑖−1) = 2𝑖 − 1, 𝑖 = 1,2 … ⌈
𝑟

2
⌉ , 𝑗 = 1,2. . 𝑛, 

 

ℎ(𝑣𝑟(𝑗−1)+2𝑖) = 2 ⌈
𝑟

2
⌉ − 1 + 2𝑖, 𝑖 = 1,2 … ⌊

𝑟

2
⌋ , 𝑗 = 1,2. . 𝑛, 

 

ℎ(𝑤𝑖) = 2(𝑟 + 𝑖) − 1, 𝑖 = 1,2 … 𝑛,  ℎ(𝑤𝑛+1) = 0, 

 

ℎ(𝑢𝑖) = 2(𝑟 + 𝑛), 𝑖 = 1,2 … 𝑛. 

 

The above mapping and the Figure 2. (b) illustrates the theorem 3.3. 
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(a)                                                                         (b) 

Fig. 2: The graphs 𝐇𝐖(𝟓) and 𝐒𝐖(𝐫) with 𝐧 = 𝟖 and its radial radio labelling which attains the bound. 

 

Lemma 3.1: Let 𝐺 = (𝑉, 𝐸) be a connected graph of order 𝑛 with radius 3. Suppose there exists a vertex 𝑣 in a clique in G of 

order 𝑘  in 𝐺 such that 𝑑𝑒𝑔 (𝑣) =  ∆(𝐺) = 𝑠,  then the radial radio number of 𝐺 is at least 𝑠 + 𝑙 − 1. 

 

Proof: Let 𝑉1 = {𝑣1, 𝑣2 … 𝑣𝑙} be the vertices of the clique in the graph G. Let 𝑣 ∈ 𝑉1 such that 𝑑𝑒𝑔 (𝑣) =  ∆(𝐺) = 𝑠. Since the 

radius of the graph is 3, for a radial radio labelling condition, we must assign 𝑚 + 1 distinct labels including the vertex v.  Again, 

each of the l clique vertices must be labelled with a difference at least 2. Since already we have used 𝑙 numbers in the adjacency of 

v for the clique vertices, we must label with l more distinct numbers.  But if we assign radial radio labelling by starting and ending 

with clique vertex then we can reduce 2 more numbers. Hence the lower bound of the graph is  𝑠 + 1 + 𝑙 − 2 = 𝑠 + 𝑙 − 1.  
 

Theorem 3.4:  Let KC(r) be a uniform 𝑟 −cyclic split graph with 𝑛(𝑚𝑟 + 1) vertices. Then,   

 

𝑟𝑟(𝐾𝐶(𝑟))) = 𝑚𝑟 + 2𝑛 − 2, 𝑚 > 1. 
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Proof: First we name the vertices of the 𝑛𝑚 cycles and the complete graph as {𝑣1, 𝑣2 … 𝑣𝑟 , 𝑣𝑟+1 … 𝑣𝑚𝑟 , 𝑣𝑚𝑟+1 … 𝑣𝑛𝑚𝑟} and 

{𝑤1, 𝑤2 … 𝑣𝑛} respectively.  Next, we define a mapping ℎ from the vertex set of KC(r) to the non-negative integers as follows: 

 

ℎ(𝑣𝑚𝑟(𝑘−1)+(𝑟(𝑖−1)+𝑗)) = 𝑚(𝑗 − 1) + 𝑖, 𝑖 = 1,2 … 𝑚, 𝑗 = 1,2 … 𝑟, 𝑘 = 1,2 … 𝑛. 

 

ℎ(𝑤𝑖) = 𝑚𝑟 + 2𝑖, 𝑖 = 1,2 … 𝑛 − 1, ℎ(𝑤𝑛) = 0. 

 

Now we claim that 𝑑(𝑢, 𝑤) + | ℎ (𝑢)− ℎ(𝑤)| ≥ 4,  for all 𝑢, 𝑤 ∈ 𝑉(KC(r)). 
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Fig. 3: A radial radio labelling of 𝐊𝐂(𝟒) with 𝐦 = 𝟑, 𝐧 = 𝟒 which attains the radial radio number 

 

Case 1: Suppose u and w lies on the same cycle, then 𝑢 = 𝑣𝑚𝑟(𝑘−1)+(𝑟(𝑖−1)+𝑠) and 𝑤 = 𝑣𝑚𝑟(𝑘−1)+(𝑟(𝑖−1)+𝑡), 1≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑖 ≤

𝑚, 1 ≤ 𝑠 ≠ 𝑡 ≤ 𝑟. Therefore, ℎ(𝑢) = 𝑚(𝑠 − 1) + 𝑖,  ℎ(𝑤) = 𝑚(𝑡 − 1) + 𝑖 and  𝑑(𝑢, 𝑤) ≥ 1. Hence the radial radio labelling 

condition becomes 𝑑(𝑢, 𝑤) + | ℎ (𝑢)− ℎ(𝑤)| ≥ 1 + |𝑚(𝑠 − 𝑡)| ≥ 3, since 𝑚 > 1. 

 

Case 2: Suppose u and w lies on the different cycle with the same hub vertex then 𝑢 = 𝑣𝑚𝑟(𝑘−1)+(𝑟(𝑠−1)+𝑗) and 𝑤 =

𝑣𝑚𝑟(𝑘−1)+(𝑟(𝑡−1)+𝑗), 1≤ 𝑘 ≤ 𝑛, 1 ≤ 𝑗 ≤ 𝑟, 11 ≤ 𝑠 ≠ 𝑡 ≤ 𝑚. Here, ℎ(𝑢) = 𝑚(𝑗 − 1) + 𝑠,  ℎ(𝑤) = 𝑚(𝑗 − 1) + 𝑡 and  𝑑(𝑢, 𝑤) ≥

2. Therefore 𝑑(𝑢, 𝑤) + | ℎ (𝑢)− ℎ(𝑤)| ≥ 2 + |(𝑠 − 𝑡)| ≥ 3, since 𝑠 ≠ 𝑡. 

 

Case 3: Suppose u and w lies on the different cycle with the same hub vertex then 𝑢 = 𝑣𝑚𝑟(𝑠−1)+(𝑟(𝑖−1)+𝑗) and 𝑤 =

𝑣𝑚𝑟(𝑡−1)+(𝑟(𝑖−1)+𝑗), 1≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑟, 11 ≤ 𝑠 ≠ 𝑡 ≤ 𝑛. Therefore, the modulus difference of ℎ(𝑢) and ℎ(𝑣) is greater than or 

equal to zero. Also, the distance between them is exactly 3. Hence, 𝑑(𝑢, 𝑤) + | ℎ (𝑢)− ℎ(𝑤)| ≥ 3. 

 

Case 4: Let u be a vertex on any cycle and w be a vertex in the complete graph. 

 

Case 4.1: If 𝑤 ≠ 𝑤𝑛+1, then ℎ(𝑢) takes the maximum value 𝑚𝑟 and ℎ(𝑤) takes the minimum value 𝑚𝑟 + 2. But the difference 

between them is either 1 or 2. Hence 𝑑(𝑢, 𝑤) +  | ℎ (𝑢)− ℎ(𝑤)| ≥ 1 + |𝑚𝑟 + 2 − 𝑚𝑟| = 3. 

 

Case 4.2: If 𝑤 = 𝑤𝑛+1, then ℎ(𝑢) takes the minimum value 1 for the vertex 𝑣1 which is at a distance 2 from the label 0. Hence 

the radial radio labelling condition holds in this case. 

 

Case 5: Suppose u and w are any two vertices in the complete graph, then the distance between them is 1 and |𝑓(𝑢) − 𝑓(𝑣) ≥ 2|.  
 

Hence 𝑑(𝑢, 𝑤) +  | ℎ (𝑢)− ℎ(𝑤)| ≥ 3. 

 

Therefore, the radial radio labelling of KC(r)  satisfies,  𝑟𝑟(𝐾𝐶(𝑟))) ≤ 𝑚𝑟 + 2𝑛 − 2         _____________________ (1) 

 

Again, from Lemma 3.1, we have deg(𝑤1) = ∆(𝐾𝐶(𝑟)) = 𝑠 = 𝑘𝑟 + 𝑛 − 1 and 𝑙 = 𝑛.  

 

Therefore, we get 𝑟𝑟(𝐾𝐶(𝑟))) ≥ 𝑠 + 𝑙 − 1 = 𝑚𝑟 + 𝑛 − 1 + 𝑛 − 1 = 𝑚𝑟 + 2𝑛 − 2 __________________________(2) 

 

From equations (1) and (2) we get, 𝑟𝑟(𝐾𝐶(𝑟))) = 𝑚𝑟 + 2𝑛 − 2.         
 

Theorem 5: Let G be a uniform n-wheel split graph KW(r), then the radial radio number of G satisfies rr(KW(r)) ≤ 2r + 4(n −
1), n > 1. 
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Fig. 4: A graph 𝐊𝐃𝐖(𝟓) with 𝐧 = 𝟖 and its radial radio labelling 

 

Proof: The proof is left to the reader. 

 

3. CONCLUSION  
In this paper we have determined the radial radio labelling of certain uniform split and wheel graphs. Further the work is extended 

to the interconnection networks. 
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