
Ishaan Jaffer; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |46

ISSN: 2454-132X

Impact factor: 6.078
(Volume 6, Issue 4)

Available online at: www.ijariit.com

Parallel A* search on a multi-core CPU
Ishaan Jaffer

ijaffer@andrew.cmu.edu

Carnegie Mellon University, Pittsburgh, Pennsylvania

ABSTRACT

Multi-core central processing units (CPU) and the graphics

processing unit (GPU) have become popular parallel

computing platforms in recent years [1]. The GPU platform is

commonly adopted in the research community as it has been

to be superior to the traditional CPU. Straightforward

implementations of Parallel algorithms on a GPU can easily

achieve speedup of ten times or more over the sequential

algorithms. However, achieving significant speedup on a

multi-core CPU (over the sequential algorithm) requires

intelligently designed and well optimized algorithms [3]. This

paper discusses a parallel implementation of A* search which

achieved 6.67x Speedup with a search space of 106 nodes,

3.14x speedup with 107 nodes and 137.67x speedup with 108

nodes when run on the eight-core, 3.0 GHz Intel Core i7

processor. This paper also analyses different work partitioning

strategies and how the performance of the parallel A* search

algorithm scales.

Keywords⸻ Parallel Computing, A* Search, Search

Algorithms, High-Performance Computing, Multi-core, CPU,

GPU, Speedup, Threading, Parallel A* Search

1. INTRODUCTION
Graphs are the fundamental data structure used in fields of

computational biology, robotics, understanding social

interaction and various forms of relational data [1], [2]. Due to

the massive data-set sizes of these applications and the rising

popularity of “big data” they have required increasingly long

periods of computing time [2].

Fig. 1: Setup of the search space (start: green, end: red)

Straightforward implementations of parallelizing the A*

algorithm rarely provide any significant speedup due to the

random nature of the memory access patterns - a fundamental

property of graph algorithms [5]. For the purpose of

performance measurement, the search space is a 2-D grid with

the start at the top left and end at the bottom right (Chart-1). This

configuration was selected because it is the most

computationally heavy and takes the longest time to search.

2. SEQUENTIAL A* SEARCH
A* search is guided by a heuristic function and is one of the most

widely used best-first search algorithms in artificial intelligence

[4]. By design A* search is a sequential algorithm due to which

several attempts at parallelizing it efficiently have proved to be

challenging [6]. The key data structures in any A*

implementation are:

● The closed list - stores all the visited nodes. For this

implementation each node struct/structure has a Boolean

variable indicating if it has been visited. Hence this

implementation does not require a closed list.

● The open list - stores the states that have not been visited.

The open list uses a priority queue to store the nodes in a

particular order.

The open list priority queue provides us with O(log N) insertion

and deletion operations. The nodes in the open list are sorted

according to a heuristic function f(node):

𝑓(𝑛𝑜𝑑𝑒) = 𝑔(𝑛𝑜𝑑𝑒) + ℎ(𝑛𝑜𝑑𝑒)

Where g(node) is the cost from the starting node to the current

node and h(node) is the cost from the current node to the end

node. For all A* implementations used in this paper, the cost is

defined as the Euclidean distance between any two nodes

(equations below).

𝑔(𝑛𝑜𝑑𝑒) = (𝑠𝑡𝑎𝑟𝑡. 𝑥 − 𝑛𝑜𝑑𝑒. 𝑥)2 + (𝑠𝑡𝑎𝑟𝑡. 𝑦 − 𝑛𝑜𝑑𝑒. 𝑦)2
ℎ(𝑛𝑜𝑑𝑒) = (𝑛𝑜𝑑𝑒. 𝑥 − 𝑒𝑛𝑑. 𝑥)2 + (𝑛𝑜𝑑𝑒. 𝑦 − 𝑒𝑛𝑑. 𝑦)2

The major operations of the sequential A* algorithm are:

● Dequeuing a node from the open list priority queue.

● Checking if the current node is the end or has been

visited.

● If the current node is not visited, then marking it as

visited.

● For each neighbor of the current node - calculating the

heuristic of the neighbor and enqueuing the neighbor to

the open list.

3. PARALLELIZING A* SEARCH
Language and Libraries Used: C, C++, OpenMP

Machine: Eight-core, 3.0 GHz Intel Core i7 processor

file:///C:/omak/Downloads/www.IJARIIT.com
http://www.ijariit.com/
mailto:ijaffer@andrew.cmu.edu

Ishaan Jaffer; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |47

3.1 Parallelizing the calculation of the heuristic

For each node in the graph there are 8 neighbors and for each

neighbor the heuristic needs to be calculated. In this approach

the 8 heuristics were calculated in parallel and the nodes were

then sequentially added to the priority queue. With the given

setup it was found that this approach provided limited speedup

and scaled poorly, furthermore the speedup depends on what

heuristic is being used. For computationally heavy heuristics

there was a significant speedup while a slowdown was observed

for common heuristics like Manhattan distance and Euclidean

Distance. The challenge with parallelizing A* is creating a

mapping that works independently of what heuristic is used.

This approach did not take much advantage of the 8 cores

available on the machine and led to a speedup of only 1.1x on

a 100x100 (104 nodes) graph.

3.2 Providing each thread with its own open list priority

queue

For a machine with T cores this approach would initialize T

priority queues, with each thread exploring and execute A*

search in its own assigned region of the search space. The data

flow for this approach is shown in fig.2.

Fig. 2: Parallel A* with independent priority queues

Since each of the T threads can run an A* search independent of

the other T-1 queues, this eliminates any time that would have

been lost due to locking and unlocking a shared Priority Queue

or any time spent on communication between the threads.

In order to use this technique of parallelization, the search space

needs to be appropriately partitioned and the following

conditions need to be held True to ensure the correctness and

efficiency of A* (when run with T threads):

● During the initialization of each priority queue, any node

added to PQ1, PQ2, PQ3…PQT needs to have a path from the

start to the node.

● When the nodes are distributed amongst PQ1, PQ2,

PQ3...PQT each PQ should have a fair distribution of nodes.

If one thread was only given all the lowest priority elements,

then there would be a large amount of work imbalance and idle

time for the rest of the cores.

To ensure the conditions above are held true, a combination of

depth limited A* search with parallel A* search is implemented.

3.3 Limited A* Search with Parallel A* Search

Limited A* search does not visit the entire search space but

instead visits the nodes in the bounded search space. The limited

A* search is run sequentially and visits a subset of the search

space, adding nodes to the shared open list priority queue [7].

The steps in this proposed parallel implementation are the

following:

• Depth limited A* to initialize T open list priority queues.

• Each thread runs an A* search using its own open list and

explores a subset of the search space.

Chart-3 illustrates the main steps in this final approach.

Fig. 3: Depth limited A* with Parallel A*

(n1, n2…n16 are nodes in the graph)

The limit or constraint placed on the limited search can heavily

influence the overall performance. For the purpose of this paper,

the size of the shared open list priority queue is used to decide

when the limited A* should terminate. This is discussed in more

detail in the Work Partitioning Section.

3.4 Work Partitioning

In order to minimize idle time for each core the following

aspects of the current parallel algorithm are optimized:

1. When the Limited A* should terminate. This is controlled by

the size of the Priority Queue.

2. After the Limited A* terminates the manner in which nodes

are distributed between the Priority Queues of Individual

Threads.

To best decide at what size of the priority queue the limited A*

should terminate the maximum allowed size of the PQ was

varied and speedup on a 1000x1000 (106 nodes) graph was

measured. All sizes are multiples of 8, since this was run on an

8-core machine. Having multiples of 8 in the priority queue

ensures that each thread can gets an equal number of nodes to

work on.

Table 1: Percentage of nodes explored by limited A* and

time taken

% of Total

Nodes

Size of PQ

(rounded to closest

multiple of 8)

Time Taken

(seconds)

0.1% 1000 0.0120

0.05% 504 0.0070

0.025% 248 0.0040

0.01% 104 0.0023

0.005% 48 0.0020

0.0025% 24 0.0017

0.001% 8 0.0014

Fig. 4: Total Time Taken vs Size of PQ

file:///C:/omak/Downloads/www.IJARIIT.com

Ishaan Jaffer; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |48

From the measurements it was found that minimizing total time

spent running sequential limited A*, maximized total speedup.

Specifically, terminating sequential A* search when the shared

open list PQ consisted of 0.001% of the total search space nodes

led to the best overall performance of the parallel A*.

3.5 Work distribution between individual threads

After 0.001% of the total search space nodes are in the Priority

Queue the nodes need to be distributed amongst individual

threads. To find the best partitioning scheme Round Robin

Partitioning, Interval Partitioning and Greedy Partitioning were

tested. Round Robin Partitioning had the lowest standard

deviation in total priority of each priority queue (STD DEV =

2211.21), this led to the best distribution of the most promising

nodes amongst threads (See Appendix A for detailed results).

To summarize, the final parallel implementation consisted of the

following:

• A limited sequential A* to explore 0.001% of the total search

space.

• On a machine with T cores, T priority Queues are initialized.

• The explored nodes are then distributed to the Priority Queues

of T threads using the Round Robin partitioning strategy.

• Each thread then conducts A* search using its individual

priority queue and the entire operation terminates either when

one of the threads finds the end or when all threads have

explored the entire search space.

4. RESULTS
The following measurements were recorded for the final parallel

A* implementation:

Table 2: Time Taken for the parallel A* implementation

Number of

Threads

Time

Taken

(seconds)

for 106

nodes

Time

Taken

(seconds)

for 107

nodes

Time

Taken

(seconds)

for 108

nodes

Sequential 0.0060 5.0900 0.8260

2 0.0009 3.5000 0.0060

3 0.0009 2.6800 0.0060

4 0.0011 2.1000 0.0062

5 0.0012 1.9800 0.0070

6 0.0013 1.8000 0.0070

7 0.0014 1.7500 0.0072

8 0.0012 1.6200 0.0072

9 0.0014 2.0500 0.0257

10 0.0015 2.3000 0.0680

Table 3: Speedup for the parallel A* implementation

Number of

Threads

Speedup

for 106

nodes

Speedup

for 107

nodes

Speedup

for 108

nodes

Sequential 1 1 1

2 6.6667 1.4542 137.6667

3 6.6667 1.8992 137.6667

4 5.4545 2.4238 133.2258

5 5.1326 2.5707 118.0000

6 4.6511 2.8277 118.0000

7 4.4444 2.9085 116.3380

8 5.0977 3.1420 114.7222

9 4.2105 2.4829 32.1400

10 4.0000 2.2130 12.1470

Fig. 5: Speedup vs Number of Threads

(106 nodes search space)

Fig. 6: Speedup vs Number of Threads

(107 nodes search space)

Fig. 7: Speedup vs Number of Threads

(107 nodes search space)

4.1 Visualization of Searches

To analyze both searches a visualization heatmap was created.

The legend indicates time in seconds.

Fig. 8: A* Sequential on a 50x50 graph

Fig. 9: A* Parallel on a 50x50 graph

4.2 Analysis

Speedup scaled as the size of the graph increased. Introducing

parallel search for 108 nodes led to a speedup of 138x over the

file:///C:/omak/Downloads/www.IJARIIT.com

Ishaan Jaffer; International Journal of Advance Research, Ideas and Innovations in Technology

© 2020, www.IJARIIT.com All Rights Reserved Page |49

sequential version while parallel A* for 106 nodes led to a 6x

speedup. In the sequential version for each node visited, 8 of its

neighbors need to be enqueued to the open list PQ and the

heuristic needed to be calculated for each of them. Due to this,

in the parallel search the search space for an individual thread is

reduced by 1/8𝑇 (with T cores). The parallel version provides

each thread with an assigned search space which leads to more

overall nodes being visited (as seen in the visualizations in

section 4.1). This decreases the number of neighbors that need

to be enqueued per thread and thus less heuristics calculated per

thread.

For 106 nodes and 108 nodes the best performance was observed

with 2 threads and then linearly decreased as we added more

threads (It is important note that there was still a significant

amount of speedup over the sequential version when using 8

threads, it was just not the best performing). Since the limit of

sequential A* depends on the number of threads, using more

threads increases the number of nodes visited. In the case of

search spaces with 106 nodes and 108 nodes, 2 threads provided

the best balance between splitting up the search space while

ensuring that the total number of nodes visited remained close

to the size of the graph. Chart-10 illustrates how an increase in

the number of threads impacted the total number of nodes visited

for a graph with 106 nodes.

Fig. 10: Number of Nodes Visited vs. Number of Threads

5. CONCLUSION
This paper proposes a parallel A* search algorithm

implementation that can be run on a multi-core CPU. The

experiments demonstrated that CPU based parallel algorithm

can have a considerable amount of speedup without using the

computing resources of a GPU. This algorithm can significantly

accelerate various search and computation tasks on a wide range

of machines. An analysis of the current parallel implementation

with 3 main phases - depth limited sequential A*, distributing

work between each thread and each thread executing A* in

parallel – found the following data.

Phase % of total time spent

Limited A* 1.27%

Work Distribution 0.03%

Parallel A* by each thread 98.7%

On further investigation, the process of marking a node as

visited within parallel A* search took the largest amount of time

in parallel searches. This was due to contention amongst the

threads to mark the node as visited. In the future, this phase can

further be optimized and improved to get better speedup.

6. ACKNOWLEDGEMENT
This research paper is made possible through help and guidance

from the School of Computer Science at Carnegie Mellon

University and the professors for “Parallel Computer

Architecture and Programming” – Prof. Bryant and Prof.

Beckman. Two anonymous reviewers also provided insightful

comments and feedback.

6. REFERENCES

[1]. S. Hong, T. Oguntebi and K. Olukotun, "Efficient Parallel

Graph Exploration on Multi-Core CPU and GPU," 2011

International Conference on Parallel Architectures and

Compilation Techniques, Galveston, TX, 2011, pp. 78-88.

[2]. Aydin Buluç and Kamesh Madduri. 2011. Parallel breadth-

first search on distributed memory systems. In Proceedings of

2011 International Conference for High Performance

Computing, Networking, Storage and Analysis (SC ’11).

Association for Computing Machinery, New York, NY, USA,

Article 65, 1–12.

DOI:https://doi.org/10.1145/2063384.2063471

[3]. Lijuan Luo, Martin Wong, and Wen-mei Hwu. 2010. An

effective GPU implementation of breadth-first search. In

Proceedings of the 47th Design Automation Conference (DAC

’10). Association for Computing Machinery, New York, NY,

USA, 52–55. DOI:https://doi.org/10.1145/1837274.1837289

[4] Hart, P. E.; Nilsson, N. J.; and Raphael, B. 1968. A For- mal

Basis for the Heuristic Determination of Minimum Cost Paths.

Systems Science and Cybernetics, IEEE Transactions on

4(2):100–107.

[5]. A. Lumsdaine, D. Gregor, B. Hendrickson, J. Berry, and J.

Guest Editors, “Challenges in parallel graph processing,”

Parallel Processing Letters, vol. 17, no. 1, pp. 5–20, 2007.

[6]. Yichao Zhou and Jianyang Zeng. 2015. Massively parallel

a* search on a GPU. In Proceedings of the Twenty-Ninth AAAI

Conference on Artificial Intelligence (AAAI’15). AAAI Press,

1248–1254.

[7]. Korf, R.E. Depth-limited search for real-time problem

solving. Real-Time Syst 2, 7–24 (1990).

https://doi.org/10.1007/BF01840464

Appendix A

file:///C:/omak/Downloads/www.IJARIIT.com
https://doi.org/10.1145/2063384.2063471
https://doi.org/10.1145/1837274.1837289
https://doi.org/10.1007/BF01840464

