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ABSTRACT 
 

Multi-core central processing units (CPU) and the graphics 

processing unit (GPU) have become popular parallel 

computing platforms in recent years [1].  The GPU platform is 

commonly adopted in the research community as it has been 

to be superior to the traditional CPU. Straightforward 

implementations of Parallel algorithms on a GPU can easily 

achieve speedup of ten times or more over the sequential 

algorithms. However, achieving significant speedup on a 

multi-core CPU (over the sequential algorithm) requires 

intelligently designed and well optimized algorithms [3]. This 

paper discusses a parallel implementation of A* search which 

achieved 6.67x Speedup with a search space of 106 nodes, 

3.14x speedup with 107 nodes and 137.67x speedup with 108 

nodes when run on the eight-core, 3.0 GHz Intel Core i7 

processor. This paper also analyses different work partitioning 

strategies and how the performance of the parallel A* search 

algorithm scales.  
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1. INTRODUCTION 
Graphs are the fundamental data structure used in fields of 

computational biology, robotics, understanding social 

interaction and various forms of relational data [1], [2]. Due to 

the massive data-set sizes of these applications and the rising 

popularity of “big data” they have required increasingly long 

periods of computing time [2].  

 

 
Fig. 1: Setup of the search space (start: green, end: red) 

 

Straightforward implementations of parallelizing the A* 

algorithm rarely provide any significant speedup due to the 

random nature of the memory access patterns - a fundamental 

property of graph algorithms [5]. For the purpose of 

performance measurement, the search space is a 2-D grid with 

the start at the top left and end at the bottom right (Chart-1). This 

configuration was selected because it is the most 

computationally heavy and takes the longest time to search.   

 

2.  SEQUENTIAL A* SEARCH 
A* search is guided by a heuristic function and is one of the most 

widely used best-first search algorithms in artificial intelligence 

[4]. By design A* search is a sequential algorithm due to which 

several attempts at parallelizing it efficiently have proved to be 

challenging [6]. The key data structures in any A* 

implementation are:  

● The closed list - stores all the visited nodes. For this 

implementation each node struct/structure has a Boolean 

variable indicating if it has been visited. Hence this 

implementation does not require a closed list.  

● The open list - stores the states that have not been visited. 

The open list uses a priority queue to store the nodes in a 

particular order.  

The open list priority queue provides us with O(log N) insertion 

and deletion operations. The nodes in the open list are sorted 

according to a heuristic function f(node):  

𝑓(𝑛𝑜𝑑𝑒)  =  𝑔(𝑛𝑜𝑑𝑒)  +  ℎ(𝑛𝑜𝑑𝑒)                

Where g(node) is the cost from the starting node to the current 

node and h(node) is the cost from the current node to the end 

node. For all A* implementations used in this paper, the cost is 

defined as the Euclidean distance between any two nodes 

(equations below). 

𝑔(𝑛𝑜𝑑𝑒)  =  (𝑠𝑡𝑎𝑟𝑡. 𝑥 − 𝑛𝑜𝑑𝑒. 𝑥)2 + (𝑠𝑡𝑎𝑟𝑡. 𝑦 − 𝑛𝑜𝑑𝑒. 𝑦)2 
ℎ(𝑛𝑜𝑑𝑒)  =  (𝑛𝑜𝑑𝑒. 𝑥 − 𝑒𝑛𝑑. 𝑥)2 + (𝑛𝑜𝑑𝑒. 𝑦 − 𝑒𝑛𝑑. 𝑦)2 

 

The major operations of the sequential A* algorithm are:  

● Dequeuing a node from the open list priority queue. 

● Checking if the current node is the end or has been 

visited.  

● If the current node is not visited, then marking it as 

visited. 

● For each neighbor of the current node - calculating the 

heuristic of the neighbor and enqueuing the neighbor to 

the open list.  

 

3. PARALLELIZING A* SEARCH 
Language and Libraries Used: C, C++, OpenMP 

Machine: Eight-core, 3.0 GHz Intel Core i7 processor 

file:///C:/omak/Downloads/www.IJARIIT.com
http://www.ijariit.com/
mailto:ijaffer@andrew.cmu.edu


Ishaan Jaffer; International Journal of Advance Research, Ideas and Innovations in Technology 

© 2020, www.IJARIIT.com All Rights Reserved                                                                                              Page |47 

3.1 Parallelizing the calculation of the heuristic  

For each node in the graph there are 8 neighbors and for each 

neighbor the heuristic needs to be calculated. In this approach 

the 8 heuristics were calculated in parallel and the nodes were 

then sequentially added to the priority queue. With the given 

setup it was found that this approach provided limited speedup 

and scaled poorly, furthermore the speedup depends on what 

heuristic is being used. For computationally heavy heuristics 

there was a significant speedup while a slowdown was observed 

for common heuristics like Manhattan distance and Euclidean 

Distance. The challenge with parallelizing A* is creating a 

mapping that works independently of what heuristic is used. 

This approach did not take much advantage of the 8 cores 

available on the machine and led to a speedup of only 1.1x on 

a 100x100 (104 nodes) graph.  

 

3.2 Providing each thread with its own open list priority 

queue 

For a machine with T cores this approach would initialize T 

priority queues, with each thread exploring and execute A* 

search in its own assigned region of the search space. The data 

flow for this approach is shown in fig.2.  

 
Fig. 2: Parallel A* with independent priority queues  

 

Since each of the T threads can run an A* search independent of 

the other T-1 queues, this eliminates any time that would have 

been lost due to locking and unlocking a shared Priority Queue 

or any time spent on communication between the threads. 

 

In order to use this technique of parallelization, the search space 

needs to be appropriately partitioned and the following 

conditions need to be held True to ensure the correctness and 

efficiency of A* (when run with T threads):  

● During the initialization of each priority queue, any node 

added to PQ1, PQ2, PQ3…PQT needs to have a path from the 

start to the node.  

● When the nodes are distributed amongst PQ1, PQ2, 

PQ3...PQT each PQ should have a fair distribution of nodes. 

If one thread was only given all the lowest priority elements, 

then there would be a large amount of work imbalance and idle 

time for the rest of the cores.  

To ensure the conditions above are held true, a combination of 

depth limited A* search with parallel A* search is implemented.  

 

3.3 Limited A* Search with Parallel A* Search  

Limited A* search does not visit the entire search space but 

instead visits the nodes in the bounded search space. The limited 

A* search is run sequentially and visits a subset of the search 

space, adding nodes to the shared open list priority queue [7]. 

The steps in this proposed parallel implementation are the 

following:  

• Depth limited A* to initialize T open list priority queues.  

• Each thread runs an A* search using its own open list and 

explores a subset of the search space.   

Chart-3 illustrates the main steps in this final approach.  

 
Fig. 3: Depth limited A* with Parallel A* 

(n1, n2…n16 are nodes in the graph) 

 

The limit or constraint placed on the limited search can heavily 

influence the overall performance. For the purpose of this paper, 

the size of the shared open list priority queue is used to decide 

when the limited A* should terminate. This is discussed in more 

detail in the Work Partitioning Section.  

 

3.4 Work Partitioning 

In order to minimize idle time for each core the following 

aspects of the current parallel algorithm are optimized:  

1. When the Limited A* should terminate. This is controlled by 

the size of the Priority Queue.  

2. After the Limited A* terminates the manner in which nodes 

are distributed between the Priority Queues of Individual 

Threads.  

 

To best decide at what size of the priority queue the limited A* 

should terminate the maximum allowed size of the PQ was 

varied and speedup on a 1000x1000 (106 nodes) graph was 

measured. All sizes are multiples of 8, since this was run on an 

8-core machine. Having multiples of 8 in the priority queue 

ensures that each thread can gets an equal number of nodes to 

work on. 

 

Table 1: Percentage of nodes explored by limited A* and 

time taken 

% of Total 

Nodes 

Size of PQ 

(rounded to closest 

multiple of 8) 

Time Taken 

(seconds) 

0.1% 1000 0.0120 

0.05% 504 0.0070 

0.025% 248 0.0040 

0.01% 104 0.0023 

0.005% 48 0.0020 

0.0025% 24 0.0017 

0.001% 8 0.0014 

 

 
Fig. 4: Total Time Taken vs Size of PQ 
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From the measurements it was found that minimizing total time 

spent running sequential limited A*, maximized total speedup. 

Specifically, terminating sequential A* search when the shared 

open list PQ consisted of 0.001% of the total search space nodes 

led to the best overall performance of the parallel A*.  

 

3.5 Work distribution between individual threads 

After 0.001% of the total search space nodes are in the Priority 

Queue the nodes need to be distributed amongst individual 

threads. To find the best partitioning scheme Round Robin 

Partitioning, Interval Partitioning and Greedy Partitioning were 

tested. Round Robin Partitioning had the lowest standard 

deviation in total priority of each priority queue (STD DEV = 

2211.21), this led to the best distribution of the most promising 

nodes amongst threads (See Appendix A for detailed results).  

To summarize, the final parallel implementation consisted of the 

following:  

• A limited sequential A* to explore 0.001% of the total search 

space.  

• On a machine with T cores, T priority Queues are initialized.  

• The explored nodes are then distributed to the Priority Queues 

of T threads using the Round Robin partitioning strategy. 

• Each thread then conducts A* search using its individual 

priority queue and the entire operation terminates either when 

one of the threads finds the end or when all threads have 

explored the entire search space.  

 

4. RESULTS 
The following measurements were recorded for the final parallel 

A* implementation: 

 

Table 2: Time Taken for the parallel A* implementation 

Number of 

Threads 

Time 

Taken 

(seconds) 

for 106 

nodes 

Time 

Taken 

(seconds) 

for 107 

nodes 

Time 

Taken 

(seconds) 

for 108 

nodes 

Sequential 0.0060 5.0900 0.8260 

2 0.0009 3.5000 0.0060 

3 0.0009 2.6800 0.0060 

4 0.0011 2.1000 0.0062 

5 0.0012 1.9800 0.0070 

6 0.0013 1.8000 0.0070 

7 0.0014 1.7500 0.0072 

8 0.0012 1.6200 0.0072 

9 0.0014 2.0500 0.0257 

10 0.0015 2.3000 0.0680 

 

Table 3: Speedup for the parallel A* implementation 

Number of 

Threads 

Speedup 

for 106 

nodes 

Speedup 

for 107 

nodes 

Speedup 

for 108 

nodes 

Sequential 1 1 1 

2 6.6667 1.4542 137.6667 

3 6.6667 1.8992 137.6667 

4 5.4545 2.4238 133.2258 

5 5.1326 2.5707 118.0000 

6 4.6511 2.8277 118.0000 

7 4.4444 2.9085 116.3380 

8 5.0977 3.1420 114.7222 

9 4.2105 2.4829 32.1400 

10 4.0000 2.2130 12.1470 

 

 
Fig. 5: Speedup vs Number of Threads 

(106 nodes search space) 

 

 
Fig. 6: Speedup vs Number of Threads 

(107 nodes search space) 

 

 
Fig. 7: Speedup vs Number of Threads 

(107 nodes search space) 

 

4.1 Visualization of Searches 

To analyze both searches a visualization heatmap was created. 

The legend indicates time in seconds. 

 
Fig. 8: A* Sequential on a 50x50 graph 

 

 
Fig. 9: A* Parallel on a 50x50 graph 

4.2 Analysis  

Speedup scaled as the size of the graph increased. Introducing 

parallel search for 108 nodes led to a speedup of 138x over the 
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sequential version while parallel A* for 106 nodes led to a 6x 

speedup. In the sequential version for each node visited, 8 of its 

neighbors need to be enqueued to the open list PQ and the 

heuristic needed to be calculated for each of them. Due to this, 

in the parallel search the search space for an individual thread is 

reduced by 1/8𝑇 (with T cores). The parallel version provides 

each thread with an assigned search space which leads to more 

overall nodes being visited (as seen in the visualizations in 

section 4.1). This decreases the number of neighbors that need 

to be enqueued per thread and thus less heuristics calculated per 

thread.  

 

For 106 nodes and 108 nodes the best performance was observed 

with 2 threads and then linearly decreased as we added more 

threads (It is important note that there was still a significant 

amount of speedup over the sequential version when using 8 

threads, it was just not the best performing). Since the limit of 

sequential A* depends on the number of threads, using more 

threads increases the number of nodes visited. In the case of 

search spaces with 106 nodes and 108 nodes, 2 threads provided 

the best balance between splitting up the search space while 

ensuring that the total number of nodes visited remained close 

to the size of the graph. Chart-10 illustrates how an increase in 

the number of threads impacted the total number of nodes visited 

for a graph with 106 nodes.  

 

 
Fig. 10: Number of Nodes Visited vs. Number of Threads 

 

5. CONCLUSION 
This paper proposes a parallel A* search algorithm 

implementation that can be run on a multi-core CPU. The 

experiments demonstrated that CPU based parallel algorithm 

can have a considerable amount of speedup without using the 

computing resources of a GPU. This algorithm can significantly 

accelerate various search and computation tasks on a wide range 

of machines. An analysis of the current parallel implementation 

with 3 main phases - depth limited sequential A*, distributing 

work between each thread and each thread executing A* in 

parallel – found the following data.   

 

 

 

Phase % of total time spent 

Limited A* 1.27% 

Work Distribution 0.03% 

Parallel A* by each thread 98.7% 

 

On further investigation, the process of marking a node as 

visited within parallel A* search took the largest amount of time 

in parallel searches. This was due to contention amongst the 

threads to mark the node as visited. In the future, this phase can 

further be optimized and improved to get better speedup.  
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