

International Journal Of Advance Research, Ideas And Innovations In Technology

ISSN: 2454-132X Impact factor: 6.078 (Volume 6, Issue 3)

Available online at: www.ijariit.com

A statistical approach on experimental study for determining switching frequency of retro reflector sensor using PLC

Rakesh R.

rak2win@gmail.com

Periyar Maniammai Institute of Science and Technology, Vallam, Tamil Nadu

Technology, Vallam, Tamil Nadu

M. Rajathi
<u>sixfaceraji2010@gmail.com</u>
Periyar Maniammai Institute of Science and

Dr. R. Arumugam
<u>arumugamr@pmu.edu</u>
Periyar Maniammai Institute of Science and
Technology, Vallam, Tamil Nadu

U. Saravana Kumar
<u>uskemail@gmail.com</u>
Periyar Maniammai Institute of Science and
Technology, Vallam, Tamil Nadu

ABSTRACT

Automation is a multi disciplinary platform which involves controls and drives. Though drives aqnd controlers bilds automation together without sensors it is not possible. Sensors are the vital device which interact with the physical environment and response to the system in the form of input. These inputs are further processed based on the predetermined porgramming in controllers to give the respective output via drives. Industrial sensors are broadly classified as retro reflective sensor, capacitibve sensor, photoelectric sensor, ultrasonic sensor aqnd magnetic sensor. The reliability and switching frequency of the sensor is the key factor to determine the performance of the system. In this paper, a detailed study on one such key factor named switching frequency is taken for experimental study with retro reflective sensors. The significant study of the switching frequency and the comparion of the performance the statistical methods like descriptive statistics, correlation and chi-square test are used.

Keywords— Switching frequency, PLC, Retro reflective Sensor, Correlation, Chi-square

1. INTRODUCTION

Retro refelective sensor is a type of photoelectric sensor. The sensor used here is retro reflective type. It's non-polarizing without MSR function. The sensor can be called as transceiver and has single cylindrical stainless-steel housing. It is of prewired type with sensing range between 0.1 to 2m. The output from sensor in NPN. In particular in the form of retro reflective work without any physical contact and feedback. Retro reflective switches are contact less and thus allow for high switching frequency with high life cycle. In any industry the induction motor plays an important role due to its low cost and simplicity. By implementing a monitoring and control system for the speed of motor, the induction motor can be used in high performance variable-speed applications. When the stator winding of a three phase AC supply, a rotating magnetic field is established and rotates at synchronous speed. The direction of rotation of the field can be reversed by S. R. Venupriya et. al., (2015) [1] interchanging the connection to the supply of any two leads of a three phase induction motor. A statistical method of analysis have already been done by on inductive sensor data which was collected through various trials in experiments [2]. Another study was done on the application of PLC in seggreagation of waste materials [3]. High frequency voltage-fed inverter with phase- shift control for induction heating has been discussed by Mollov, S.V, et. al., [4].

A control method of reducing the size of the dc-link capacitors of a converter-inverter system was presented by Jung, J et. al., [5]. The main idea is to utilize the inverter operation status in the current control of the converter. This control strategy is effective in regulating the dc-voltage level. Determination of temperature recovery time in differential-pressure-based air leak detector focussed by Harus, L.G. et. al., [6]. Water pumping system with working conditions of such system in the three face motor driven and saving energey and design methodology was introducted by Abdallah. S et. al., [7-8]. A Statistical study was made by Dr.R.Arumugam et.al., for the impact of Dengue fever in Thanjavur district [9]. Abdallah, S., et. al., [10] An experiment study was made to examine the effect using PLC based solar energy. The single-switch for the heating induction has been focussed by Shenkman A. et. al., [11]. A statistical study based on the SPSS has been made a work by Dr.R.Arumugam et. al., [12] for the transportation problem to minimize cost value and finally, R.Arumugam et. al [13] studied the production of crops at time of Gaja cyclone based on the statistical study. Even the dc-link capacitor is arbitrarily small and the load varies abruptly. In this method was proposed to accurately

Rakesh R. et al.; International Journal of Advance Research, Ideas and Innovations in Technology

predict the minimum required temperature recovery, considering repeatability and accuracy of leak detector by investigating the relation between temperature recovery time and applied pressures using PLC system.

2. METHODS AND METERIALS

This sensor emits a photo beam from its light emitting diode. A reflective type photoelectric sensor can be applied to detect the photo beam reflected from target. The thrubeam sensors can measure the variation in light quantity caused by the target crossing the optical axis.

In this work, anovel method is used to capture this switcing frequency of retro reflective sensor using PLC at the various levels especially low, medium and high. Comparision of various frequencies at the various levels were made using Chi-square test, Correlation and descriptive statistics. These tools are statistically important the quality measure of varition of the particular test To check the several level statistical software SPSS used. This test was conduction at the Centre for training and research in Automation technology in Periyar Maniammai Institute of Science and Technology, Deemed to be university in Tamil Nadu, India.

2.1 Programmable Logic Controller (PLC)

Automation engineering has developed over time. Earlier maual interventions were made to control the system and later came electrical control based on relays. These relays allow power to be switched on and off without a mechanical switch. The use of relays to make simple logical control decisions was common then. The introduction of low-cost computer has brought the most recent revolution, the Programmable Logic Controller (PLC). Advantages of PLC include Cost effective for controlling complex systems; Flexible and can be applied to control other systems quickly and easily. The ease in computation abilities allow control that is more flexible, sophisticated; Troubleshooting aids make programming easier and reduce downtime; Reliable components make these likely to operate for years before failure.

2.2 Working prinicple

Mounting the photoelectric sensor on to the elevation compensation and complete the electrical connections. The target material consists of both refelective and non refelective material (as shown in figure 2 in the form of circle attached to the motor. Once the motor is on, the circle (target) rotates and hence forth the on and off of the retor reflective sensors happens at variable speed which is purely depended on the speed of the motor.

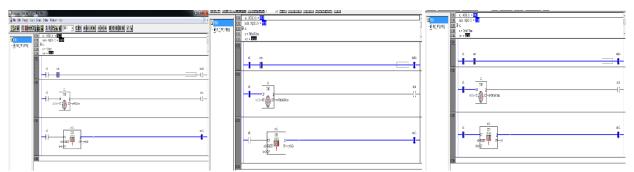


Fig. 1 Ladder Diagram for Determining The Switching Frequency of Retro reflective

The signal output received from sensor is fed as input to the PLC program which has the virtual counter. This counter counts the number of times the sensor switches on as shown in figure 1.

2.2 Target

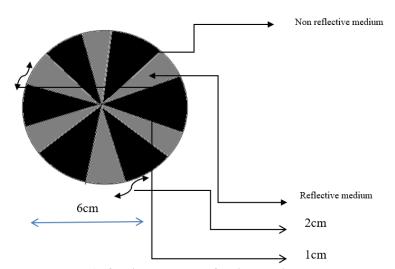


Fig. 2: Showing the Target arrangement (reflective and non reflective medium slots arranged cascade manner on circle)

Distance between disc and sensor:1mm

Disc diameter: 6cm

Number of metal pcs in disc: 6pcs

Fig. 4: Reading RPM using tachometer

Table 1: Descriptive statistics for low frequency

		Trial	Low1	Low2	Low3	Low4	Low5
NT	Valid	7	7	7	7	7	7
N	Missing		0	0	0	0	0
N	Mean		638.00	664.29	646.14	675.86	660.57
Std. En	or of Mean		445.087	490.255	476.538	504.870	490.727
M	ledian		230.00a	208.00 ^a	200.00a	200.00 ^a	206.33a
Mode			1 ^b	2 ^b	3 ^b	4 ^b	210
Std. Deviation			1177.591	1297.092	1260.800	1335.761	1298.341
Va	riance		1386719.6	1682448.2	1589617.476	1784257.476	1685690.619
Ske	ewness		2.610	2.623	2.624	2.627	2.627
Std. Error	of Skewness		.794	.794	.794	.794	.794
Kurtosis			6.861	6.913	6.918	6.926	6.927
Std. Error of Kurtosis			1.587	1.587	1.587	1.587	1.587
Range			3299	3598	3497	3696	3595
Minimum			1	2	3	4	5
Ma	ximum		3300	3600	3500	3700	3600
;	Sum		4466	4650	4523	4731	4624
	75		287.50	247.50	232.50	40.00^{c}	231.75

Table 2: Descriptive statistics for medium frequency

		Table 2. Descrip	ive staustics for	mealum freque	ncy	
		Medium1	Medium2	Medium3	Medium4	Medium5
N	Valid	7	7	7	7	
IN	Missing	0	0	0	0	
Mean		2907.43	2915.29	2457.57	2472.57	2883.71
Std. Error of l	Mean	2682.365	2697.703	2240.700	2254.866	2669.619
Median		268.00 ^a	260.00 ^a	261.00 ^a	260.00 ^a	257.00 ^a
Mode		1 ^b	2 ^b	259	4 ^b	5 ^b
Std. Deviat	ion	7096.871	7137.452	5928.334	5965.814	7063.147
Variance	;	50365584.619	50943216.571	35145143.28	35590939.95	49888050.238
Skewnes	3	2.645	2.645	2.644	2.644	2.645
Std. Error of Sk	ewness	.794	.794	.794	.794	.794
Kurtosis		6.996	6.996	6.994	6.994	6.996
Std. Error of K	urtosis	1.587	1.587	1.587	1.587	1.587
Range		18999	19098	15897	15996	18895
Minimun	1	1	2	3	4	5
Maximun	n	19000	19100	15900	16000	18900
Sum		20352	20407	17203	17308	20186
	10	52.20°	50.20°	52.80°	51.80°	
Domoontilos	25	258.75	246.25	248.25	241.00	
Percentiles	50	268.00	260.00	260.00	257.00	
	75	281.50	279.00	278.25	271.00	

Table 3: Descriptive statistics for high frequency

		Table 5: De	scripuvė stausuo	s for mgn freque	ency	
		High1	High2	High3	High4	High5
NT	Valid	7	7	7	7	7
N	Missing	0	0	0	0	0
N	Mean		5820.71	5820.14	5834.57	5791.86
Std. Erro	Std. Error of Mean		5763.227	5763.321	5777.582	5734.701
Median		79.67ª	57.00 ^a	56.00 ^a	59.00 ^a	57.00 ^a
Mode		72	2 ^b	3 ^b	4 ^b	5 ^b

Rakesh R. et al.; International Journal of Advance Research, Ideas and Innovations in Technology

Std. De	viation	15282.464	15248.066	15248.313	15286.046	15172.594
Vari	ance	233553711.238	232503522.238	232511055.810	233663188.286	230207604.810
Skew	ness	2.646	2.646	2.646	2.646	2.646
Std. Error o	f Skewness	.794	.794	.794	.794	.794
Kurt	tosis	7.000	7.000	7.000	7.000	7.000
Std. Error of Kurtosis		1.587	1.587	1.587	1.587	1.587
Range		40499	40398	40397	40496	40195
Mini	mum	1	2	3	4	5
Maxi	mum	40500	40400	40400	40500	40200
Su	ım	40899	40745	40741	40842	40543
	10	11.40°	11.40 ^c	13.00°	12.60 ^c	12.60°
Percentiles	25	56.17	47.50	49.25	46.00	46.00
refcellilles	50	79.67	56.00	59.00	57.00	57.00
	75	103.25	92.50	93.50	91.75	91.75

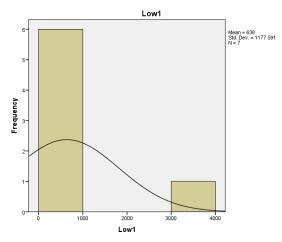


Fig. 5: Low frequency –First trial

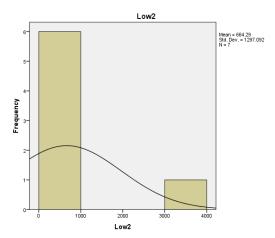


Fig. 6: Low frequency –Second trial

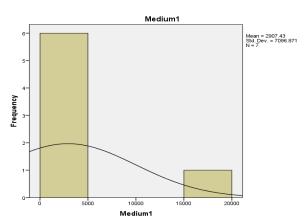


Fig. 7: Medium frequency –First trial

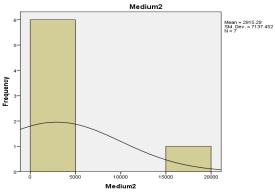


Fig. 8: Medium frequency -Second trial

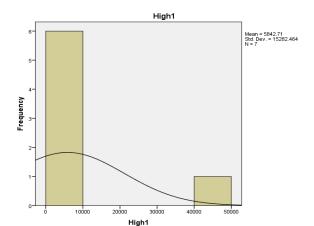


Fig. 9: High frequency –First trial

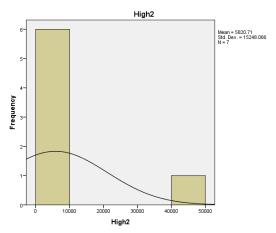


Fig. 10: High frequency –Second trial

Rakesh R. et al.; International Journal of Advance Research, Ideas and Innovations in Technology

		Low1	Low2	Low3	Low4	Low5
Chi-Square		$.000^{a}$.000a	$.000^{a}$	$.000^{a}$.714°
df		6	6	6	6	5
Asymp. Sig.		1.000	1.000	1.000	1.000	.982
Monte Sig.		$1.000^{\rm b}$	1.000 ^b	1.000 ^b	1.000^{b}	1.000
Carlo 99%	Lower Bound	1.000	1.000	1.000	1.000^{b}	1.000
Sig. Confidenc Interval	e Upper Bound	1.000	1.000	1.000	1.000	1.000

Table 5: Chi-Square test for medium frequency

		Medium1	Medium2	Medium3	Medium4	Medium5
Chi-Square		$.000^{a}$	$.000^{a}$.714°	$.000^{a}$	$.000^{a}$
df		6	6	5	6	6
Asymp. Sig.		1.000	1.000	.982	1.000	1.000
Monte Sig.		1.000 ^b	1.000 ^b	1.000 ^b	1.000^{b}	$1.000^{\rm b}$
Carlo Sig.99%	1.000	1.000	1.000	1.000	1.000	1.000
Confidence Interval	1.000	1.000	1.000	1.000	1.000	1.000

Table 6 Chi-Square test for high frequency

		ore o cim bquur	0 0000 - 0	8	J		
			High1	High2	High3	High4	High5
	Chi-Square		.714°	$.000^{a}$.000a	.000a	$.000^{a}$
	df		5	6	6	6	6
	Asymp. Sig.		.982	1.000	1.000	1.000	1.000
M . G 1	1.000	O_p	1.000^{b}	1.000 ^b	1.000 ^b	1.000^{b}	1.000^{b}
Monte Carlo	1.000	1.000	1.000	1.000	1.000	1.000	1.000
Sig.	1.000	1.000	1.000	1.000	1.000	1.000	1.000

						7	Table 7	Correla	tion coe	fficient						
		Low1	Low2	Low3	Low4	Low5	Mediu				Medium5	High1	High2	High2	High4	High5
		LUWI	LUW2	LOWS	LUW4	LOWS	m1	m2	m3	m4	Mediums	Ingiii	Ingnz	IIIgii2	mgn4	Ingiis
	Pearson Correlation	1	1.000**	.999**	.999**	.999**	.998**	.998**	.998**	.998**	.998**	.997**	.997**	.997**	.997**	.997**
	Sig. (2- tailed)		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Low1	Sum of Squares and Cross- products	832031 8.000	916037 7.000	890292 9.000	943147 6.000			503158 71.000			49788282. 000	107650 309.000		1074069 60.000	1076720 13.000	1068733 36.000
	Covariance	138671 9.667	152672 9.500	148382 1.500	157191 2.667	152803 2.167	833841 0.833	838597 8.500	696624 9.000	701001 3.333	8298047.0 00	179417 18.167	1790090 6.167	1790116 0.000	1794533 5.500	1781222 2.667
	N	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Pearson Correlation	1.000**	1	1.000**	1.000**	1.000**	.999**	.999**	.999**	.999**	.999**	.998**	.998**	.998**	.998**	.998**
	Sig. (2- tailed)	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Low2	Sum of Squares and Cross- products	916037 7.000	100946 89.429	981196 1.714				554765 80.429			54898114. 571	118716 801.571		1184493 09.714	1187423 80.857	1178609 34.286
	Covariance	152672 9.500	168244 8.238	163532 6.952	173239 3.714	168391 5.810	919406 7.690	924609 6.738	768066 9.810	772920 0.810	9149685.7 62	197861 33.595	1974138 7.262	1974155 1.619	1979039 6.810	1964348 9.048
	N	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Pearson Correlation	.999**	1.000**	1	1.000**	1.000**	.999**	.999**	.999**	.999**	.999**	.998**	.998**	.998**	.998**	.998**
	Sig. (2- tailed)	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Low3	Sum of Squares and Cross- products	890292 9.000	981196 1.714	953770 4.857	101042 40.143	982136 0.429	536259 23.571		447990 73.429		53367775. 286	115406 036.286		1151460 82.857	1154310 75.429	1145741 95.143
	Covariance	148382 1.500	163532 6.952	158961 7.476	168404 0.024	163689 3.405	893765 3.929	898823 6.452	746651 2.238	751373 3.571	8894629.2 14	192343 39.381	1919082 9.214	1919101 3.810	1923851 2.571	1909569 9.190
	N	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
Low4	Pearson Correlation	.999**	1.000**	1.000**	1	1.000**	.999**	.999**	.999**	.999**	.999**	.998**	.998**	.998**	.998**	.998**

			111 00 00	., 1			tut oj 11		1105000	1010, 1000	as ana in		15 111 10			1
	Sig. (2- tailed)	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	Sum of Squares and Cross- products	943147 6.000		101042 40.143								122291 219.714		1220160 04.143	1223178 17.571	1214101 55.857
	Covariance										9425048.4			2033600		
	N	2.667 7	3.714	0.024 7	7.476 7	9.429 7	1.571 7	4.548 7	2.429 7	3.929 7	52 7	69.952 7	0.786 7	0.690 7	2.929 7	5.976 7
	Pearson	.999**	1.000**		1.000**	1	.999**	.999**	.999**	.999**	.999**	.998**	.998**	.998**	.998**	.998**
	Correlation Sig. (2-	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
	tailed) Sum of	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000	.000
Low5	Squares and Cross-		101034 94.857							464325 31.714		118864 982.143		1185973 28.429	1188908 91.714	1180084 72.571
	products										9161117.1		1976597	1976622	1981514	1966807
	Covariance	2.167	5.810	3.405	9.429	0.619	0.214	0.643	9.952	5.286	90	30.357	5.857	1.405	8.619	8.762
	N	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Pearson Correlation	.998**	.999**	.999**	.999**	.999**	1	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**
	Sig. (2- tailed)	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000	.000
Medi um1	Sum of Squares and Cross- products			536259 23.571							30075654 6.857	650697 474.857		6492406 80.571	6508468 67.286	6460162 45.429
	Covariance	833841 0.833	919406 7.690	893765 3.929	947053 1.571					423384 66.714	50126091. 143	108449 579.143		1082067 80.095	1084744 77.881	1076693 74.238
	N	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Pearson Correlation	.998**	.999**	.999**	.999**	.999**	1.000**	1	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**
	Sig. (2- tailed)	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000	.000
Medi um2	Sum of Squares and Cross- products			539294 18.714								654421 069.571	6529452 04.571	6529559 07.714	6545712 02.857	6497131 04.286
	Covariance	838597 8.500	924609 6.738	898823 6.452	952419 4.548					425804 12.310	50412731. 595	109070 178.262	1088242 00.762	1088259 84.619	1090952 00.476	1082855 17.381
	N	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Pearson Correlation	.998**	.999**	.999**	.999**	.999**	1.000**	1.000**	1	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**
	Sig. (2- tailed)	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000	.000
Medi um3	Sum of Squares and Cross- products			447990 73.429							25123486 4.143	543541 043.143		5423237 91.429	5436654 28.714	5396304 91.571
	Covariance	696624 9.000	768066 9.810	746651 2.238	791172 2.429	769015 9.952				353673 02.786	41872477. 357	905901 73.857	9038581 7.857	9038729 8.571	9061090 4.786	8993841 5.262
	N	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Pearson Correlation	.998**	.999**	.999**	.999**	.999**	1.000**	1.000**	1.000**	1	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**
	Sig. (2- tailed)	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000	.000
Medi um4	Sum of Squares and Cross- products			450824 01.429							25282328 3.143	546978 228.143		5457533 97.429	5471035 71.714	5430430 63.571
	Covariance	701001 3.333	772920 0.810	751373 3.571	796178 3.929	773875 5.286		425804 12.310			42137213. 857	911630 38.024	9095742 0.190	9095889 9.571	9118392 8.619	9050717 7.262
	N	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7.202
	Pearson Correlation	.998**	.999**	.999**	.999**	.999**	1.000**	1.000**	1.000**	1.000**	1	1.000**	1.000**	1.000**	1.000**	1.000**
Medi	Sig. (2- tailed)	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000	.000
um5	Sum of Squares and Cross-			533677 75.286								647610 240.429		6461606 49.286	6477595 89.143	6429519 22.714
	products															

Rakesh R. et al.; International Journal of Advance Research, Ideas and Innovations in Technology

	Covariance										49888050.			1076934	1079599	1071586
		7.000	5.762	9.214	8.452	7.190	91.143	31.595	77.357	13.857		040.071	89.071	41.548	31.524	53.786
	N Pearson	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Correlation	.997**	.998**	.998**	.998**	.998**	1.000**	1.000**	1.000**	1.000**	1.000**	1	1.000**	1.000**	1.000**	1.000**
	Sig. (2- tailed)	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000	.000
Н1										546978 228.143	64761024 0.429	140132 2267.42 9	1398167 942.429	1398190 681.286	1401650 289.143	1391247 302.714
	products Covariance			192343 39.381							10793504 0.071	233553 711.238		2330317 80.214	2336083 81.524	2318745 50.452
	N	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Pearson Correlation	.997**	.998**	.998**	.998**	.998**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1	1.000**	1.000**	1.000**
	Sig. (2-tailed)	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000	.000
Н2	Sum of Squares and Cross- products	107405 437.000									64615013 4.429	139816 7942.42 9		1395043 594.286	1398495 618.143	1388115 911.714
	Covariance			191908 29.214				108824 200.762			10769168	233027 990.405				
	N	7	7	7	7	7	7	200.762 7	7	20.190	9.071	7	7	65.714	7	51.952 7
	Pearson Correlation	.997**	.998**	.998**	.998**	.998**	1.000**		1.000**		1.000**	1.000**	1.000**	1	1.000**	1.000**
	Sig. (2- tailed)	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000	.000
НЗ	Sum of Squares and	107406 960.000									64616064 9.286	139819 0681.28 6			1398518 309.429	1388138 623.143
	Covariance			191910 13.810							10769344 1.548	233031 780.214		2325110 55.810	2330863 84.905	2313564 37.190
	N	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7
	Pearson Correlation	.997**	.998**	.998**	.998**	.998**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1.000**	1	1.000**
	Sig. (2- tailed)	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000		.000
H4		107672 013.000	118742 380.857	115431 075.429	122317 817.571	118890 891.714	650846 867.286	654571 202.857	543665 428.714	547103 571.714	64775958 9.143	140165 0289.14 3	1398495 618.143	1398518 309.429	1401979 129.714	1391573 673.571
	products Covariance			192385 12.571							10795993 1.524	233608 381.524		2330863 84.905	2336631 88.286	2319289 45.595
	N	7	7	7	7	7	7	200.470 7	7	7	7	7	7	7	7	7
	Pearson	.997**	.998**	.998**	.998**	.998**		1.000**			1.000**	1.000**	1.000**	1.000**	1.000**	1
	Correlation															
	Correlation Sig. (2- tailed)	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	.000	
Н5	Sig. (2- tailed) Sum of Squares and Cross-		117860	114574	121410	118008	646016	649713	539630	543043	64295192	139124	1388115		1391573	1381245 628.857
Н5	Sig. (2- tailed) Sum of Squares and	106873 336.000 178122	117860 934.286 196434	114574 195.143	121410 155.857 202350	118008 472.571 196680	646016 245.429 107669	649713 104.286 108285	539630 491.571 899384	543043 063.571 905071	64295192 2.714 10715865	139124 7302.71 4	1388115 911.714 2313526	1388138 623.143	1391573 673.571	628.857

4. DISCUSSION AND RESULT

The objective of this work was to suggest an innovative method of reading the switching frequency of Retro reflective sensor(a type of Photoelectric sensor) by doing experimental trials and also to statistical analyze the collected experimental data .PLC programming as shown in the results of the above figures 1, 2, 3 and 4.

First table represents that the descriptive statistics for low frequency for the given five trials, the mean values are 638, 664, 646.14, 675.86 and 660.57 respectively. In the mode there is no change and the standard deviations are 1177.59, 1297.09, 1260.8, 1335.76 and 1298.34. Here, skewness all the five levels are less than 3 ($\beta_1 < 3$) ie., positive skewness and the kurtosis are greaterthan 3 ($\beta_2 > 3$). Therefore, all the trials the kurtosis are leptokurtic. Similarly, the second and third table show that the descriptive statistics for medium and high frequencies in all the trials.

Rakesh R. et al.; International Journal of Advance Research, Ideas and Innovations in Technology

Fifth and sixth figure demonstrates that the low frequencies of the first and second trial with mean values are 638, 664.29 and standard deviations are 1177.58 and 1297.09. Similarly figure seven and eight foucussing the level based on their mean and standard deviations at the medium level and figure nine and ten illustrates the same in the high level.

Fourth table explain that the chi-square test for low frequency in the five levels, it is representing there is no changes in all the trial because it is significant at 5% level (ie p = 1.000). Monte carlo method is also predicting the same at 5% level. Similarly fifth and sixth table the same at the medium and high frequencies.

Seventh table represents the relations among the low, medium and high frequency values in the Pearsons correlation coefficients. In this case correlation coefficient in the low level is 1.0, medium level is 0.998 and high level is 0.997. Therefore, all are perfect positive correlation, it is representing we have some positive relation among the three levels.

5. CONCLUSION

The switching frequency of retro reflective sensor (a type of Photoelectric sensor) is studied by varying the frequency at three different level under dynamic conditions. From the Chi-square table of the above and the Pearsons's correlations of this paper we are focusing that the significant level of changes the reading of switching frequencies of 5 trials with various levels and also represents the relationship among the given three level of frequencies. The proposed statistical study of the system successfully represents the real behavior of **Swiching Frequency Of Retro Reflective Sensor using PLC** system and frequency control based on the SPSS.

6. REFERENCES

- [1] Venupriya, S.R, Thanusre, K.P, Saranya, P. (2015), "A Novel Method of Induction Motor Speed Control Using PLC", International Journal for Research in Applied Science & Engineering Technology (IJRASET), 3 (2).
- [2] Dr.Arumugam, R, Rakesh, R, Rajathi, M (2019), A Statistical Approach on Experimental study for determining Switching frequency of Inductive sensor using PLC, Compliance Engineerig, Volume 6 Issue 2, pp:23-35.
- [3] Rakesh. R, Dr. R.Arumugam, Rajathi, M, (2020), "A Statistical Study on Segregation and Reuse of Domestic Waste in Apartments at Metro Cities Using Automation Technology (PLC)" Aegaeum Journal, Volume 8, Issue 4, pp. 1214-1221.
- [4] Mollov, S.V., Theodoridis, M. (2003), "Forsyth AJ. High frequency voltage-fed inverter with phase- shift control for induction heating". IEEE, 12-18.
- [5] Jung, J., Lim, S., Nam, K, (1999), "A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-Link capacitor". IEEE, Trans and Applications, 35 (5).
- [6] Harus, L.G., Cai, M., Kawahima, K., Kagawa, T., (2006), "Determination of temperature recovery time in differential-pressure-based air leak detector", Measurement Science and Technology 17, pp. 411-418.
- [7] Abdallah S, (2004), "The regulation of starting and breaking dynamic characteristics in water pumping systems loop control". In proceedings of the 8th Cairo University conference on mechanical design and produc Egypt; pp. 4-6.
- [8] Abdallah S. Abdulkarim, A, (2004), "Methodology to design an automated pump plants with PLC control system". Proceedings of the International engineering conference. Mutah-Jordan, 26-28, pp. 373-398.
- [9] Dr. Arumugam, R., Gowri, C, Rajathi, M. (2019), A Statistical Study on the Impact of Dengue fever in Thanjavur District using SPSS, Compliance Engineering, Volume. 10 Issue 12, pp. 671-683.
- [10] Abdallah, S., Nijmeh, (2004), "Two axis sun tracking system with PLC control". Issued Energy conversion manage, 45, pp. 193-199.
- [11] Shenkman A., "Axelrod B. Berkovich Y, (2004), Improved modification of the single-switch AC-AC converter for induction heating applications". IEE, Proc-Electr Power 151, (1), pp. 1-4.
- [12] Subhikshaa, K, Dr. Arumugam. R, Rajathi ,M, (2019), A Statistical Study on Applications of transportation problem to minimize cost in various pharmacies, International Journal of Research and Analytical Reviews (IJRAR), Vol. 6, Issue. 2, 507-512.
- [13] Dr. Arumugam, R, Sri Ranjani, B., Rajathi, M, (2019), A Statistical Study on the production of crops before and after Gaja cyclone in the Delta region around Thanjavur District, Compliance Engineering, Volume. 10 Issue 12, pp. 598-607.