ABSTRACT

The outbreak of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has thus far killed over 300,000 people and infected over 4,000,000 worldwide, resulting in catastrophe for humans. The paper talks about the modelling of new corona virus spread based on Reproduction Rate, Total Number of Active Patients and Daily New Confirmed Patients. The model determines a rough estimate on the number of new cases based on the daily rate and previous week average of active patients. This prediction model is required in order to better prepare ourselves for medical-actions. The prediction of various parameters (number of positive cases, number of recovered cases, etc.) obtained by the proposed method is accurate within a certain range.

Keywords — COVID-19, Coronavirus, India, Reproduction Rate, Daily New Confirmed Patients, Model

1. INTRODUCTION

Coronavirus disease 2019 (COVID-19) has presented an unprecedented challenge before the world. As of March 30, 2020, there have been about 0.8 million confirmed cases of COVID-2019 and about 40,000 reported deaths globally. About one-third of the world population is currently under lockdown to arrest the spread of this highly infectious disease. COVID-19 is caused by the novel coronavirus SARS-CoV-2, for which there is no specific medication or vaccine approved by medical authorities yet.

On 31 December 2019, a cluster of pneumonia cases of unknown aetiology was reported in Wuhan, Hubei Province, China. On 9 January 2020, China CDC reported a novel coronavirus as the causative agent of this outbreak, coronavirus disease 2019 (COVID-19). The first case of the COVID-19 pandemic in India was reported on 30 January 2020, originating from China. As of 16 May 2020, the Ministry of Health and Family Welfare have confirmed a total of 85,940 cases, 30,153 recoveries (including 1 migration) and 2,752 deaths in the country. The model is derived from the evolution of the following parameters New Patients (Nd), Total Number of Active Patients (Sd), Reproduction Rate (Rd) and the calculation has been used based on Polynomial Regression which depends on the Reproduction Rate and Average number of patients per week.

2. MODEL

The model has been prepared based on the factual data provided by https://www.covid19india.org. We data has the following parameters i.e. daily new confirmed cases, daily recovered cases and daily deceased. Based on the parameter we are calculate the rate of reproduction (Rd) of COVID-19.

Active Cases = New Confirmed – Daily Recovered Cases – New Deceased

Rate (Rd) = Current Active Cases/Previous Active

![Graph showing daily growth of different types of cases in India](image)
Based on the analysis, the rate varies from [1.05 to 1.4] for total population. Based on the figure mentioned below.

Taking polynomial regression, able to calculate the new number of patients based on rate. That is, New Confirmed Cases (Nd) is proportional to Rate, and New Confirmed Case (Nd) is proportional to Number of Days

\[\text{New Confirmed Patient} = \text{Rate} \times (\text{Patient Per Rate Average}) + X2 \times (\text{Per Week Average}) \]

3. RESULTS

Using Linear regression to fit model for (rates and new patients) but the it does not look good for predicting other values.
Using polynomial with degree 2 regression to fit model for (rates and new patients).

Applying Linear Regression and Polynomial Regression for Number of Days and New Patients. This linear regression does not fit the graph.

Taking the polynomial regression to fit model for number of days and new patients. The graph looks like fitting the data points.

Based on the inference, model assumes that rate is directly proportional to rate and number of days. Hence,

\[\text{New Confirmed Patient (Nd) = Rate} \times (\text{Patient Per Rate Average}) + X_2 \times (\text{Per Week Average}) \]
3.1 Data Results

<table>
<thead>
<tr>
<th>Week</th>
<th>Rate</th>
<th>Patient Per Rate Average</th>
<th>Per Week Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week1</td>
<td>1.24</td>
<td>318.8207035</td>
<td>20.37492101</td>
</tr>
<tr>
<td>Week2</td>
<td>1.172857</td>
<td>384.5127289</td>
<td>30.35263796</td>
</tr>
<tr>
<td>Week3</td>
<td>1.201429</td>
<td>318.9254749</td>
<td>350.3993039</td>
</tr>
<tr>
<td>Week4</td>
<td>1.117143</td>
<td>581.0792043</td>
<td>669.1446976</td>
</tr>
<tr>
<td>Week5</td>
<td>1.08375</td>
<td>750.0791524</td>
<td>1125.69607</td>
</tr>
</tbody>
</table>

Running Model for Maharashtra State

Polynomial Regression
- Rates (Rd) vs New Patients (Nd)
3.2 Data Results

<table>
<thead>
<tr>
<th>Week</th>
<th>Rate</th>
<th>Patient Per Rate Average</th>
<th>Per Week Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week1</td>
<td>1.288571</td>
<td>100.7136539</td>
<td>6.472150169</td>
</tr>
<tr>
<td>Week2</td>
<td>1.141429</td>
<td>118.9384954</td>
<td>5.351267576</td>
</tr>
<tr>
<td>Week3</td>
<td>1.207143</td>
<td>124.5853236</td>
<td>67.34036252</td>
</tr>
<tr>
<td>Week4</td>
<td>1.145714</td>
<td>120.7817067</td>
<td>159.6117201</td>
</tr>
<tr>
<td>Week5</td>
<td>1.1175</td>
<td>116.3580353</td>
<td>304.7467855</td>
</tr>
</tbody>
</table>

New Confirmed Patient (Nd) = Rate *(Patient Per Rate Average) + X2*(Per Week Average)

4. SUMMARY
If we analyse the data based on the model discussed above, the rate is declining but the numbers are still high based on the week average. The curve of corona virus will be flattened when the rate of reproduction (rd) will become less than 1 and the week average also becomes constant over time.

5. REFERENCES