
V. Vaishnavi K., Hiremath Gurusiddayya; International Journal of Advance Research, Ideas and Innovations in Technology

© 2019, www.IJARIIT.com All Rights Reserved Page |2104

ISSN: 2454-132X

Impact factor: 4.295
(Volume 5, Issue 3)

Available online at: www.ijariit.com

Parametric analysis of multipliers
Vaishnavi K. V.

vaishnavik04101@gmail.com

Sahyadri College of Engineering and Management,

Mangaluru, Karnataka

Gurusiddayya Hiremath

gurusiddayya.ec@sahyadri.edu.in

Sahyadri College of Engineering and Management,

Mangaluru, Karnataka

ABSTRACT

With the recent advancements, low power, low area and the quickest algorithms are in high demand. In this project, an effort

is made to implement modular arithmetic operations like addition, multiplication is executed. The hardware description

language used is Verilog. Each of these is implemented in Xilinx ISE 14.2 with Vertex 6 as the family and in Cadence 45nm

technology. The area, power and the timings of each of these algorithms are tabulated. The layouts and the RTL schematic of

these algorithms are also included. A designer whose objective is to design a system with arithmetic operations can make

decision-based on these parameters. Therefore he has a stable and efficient system on his hands.

Keywords— Booth multiplier, ISIM

1. INTRODUCTION
The multiplier is a standout amongst the most omnipresent arithmetic data path operation in present day digital design. In the

condition of workmanship Digital Signal Processing and graphics applications, multiplication is a significant and computationally

escalated task. The multiplication operation is absolutely present in numerous pieces of a computerized framework or advanced

PC, most prominently in sign handling, designs and logical calculation. The multiplier can be utilized in numerous applications

such as in digital processing, cryptography and contributes in updating the exhibition of the application. However, these tasks

command the execution time. Therefore, there is a need for high performance less delay multiplier. The interest of fast preparing

has been expanding because of growing PC and sign handling applications.

Speed and effectiveness of calculation is frequently a significant factor in the successful utilization of computerized sensors.

Digital Multipliers are at the centre of all Advanced Sign Processors (DSPs) and to a great extent decide the speed of the DSPs

and advanced sensors. Because of the significance of digital multipliers in DSP, it has dependably been a functioning region of

research and has a very extension.

In Array multiplier makes use of adding and shifting algorithm. In this algorithm, a partial product is generated by the

multiplication of multiplicand with each bit of the multiplier. After every multiplication partial product thus generated is shifted

according to its bit order and then all the partial products are added to obtain the final product. Array multiplier is known for its

simple, scalable and repetitive structure but occupies a large area as well as has a significant combinational delay which many

times contribute to the critical path delay [1].

A relative investigation of the resources associated with the Multiplication of two N-Bit double numbers is performed utilizing a

Vedic Multiplication. Nikhilam Sutra is introduced for Multiplication of large paired numbers near a picked base and remarks are

made regarding how such Multiplication is successfully decreased to Multiplication of little numbers.[2]

In paper [3], proved that the Vedic multiplier is better than array multiplier in terms of speed and resources required. The regular

structure of Vedic multiplier makes its implementation using wider inputs easier and simple.

In the paper [4], booth multiplier by radix 2 and radix 4 are implemented and its speed, area are compared. They concluded that

radix-2 booth multiplier has less area and circuit complexity compared to radix 4 but radix 4 has higher speed and performance.

A 16-bit multiplier has been designed using a radix-8 and radix-16 Booth’s multiplication that reduces the number of partial

products. Radix-8 and radix-16 booth’s multiplication algorithms were carried out for the DSP applications. Concluded that radix-

16 takes less delay but more area than that of radix-8 booth’s multiplication [5].

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V5I3-1962
mailto:vaishnavik04101@gmail.com
mailto:gurusiddayya.ec@sahyadri.edu.in

V. Vaishnavi K., Hiremath Gurusiddayya; International Journal of Advance Research, Ideas and Innovations in Technology

© 2019, www.IJARIIT.com All Rights Reserved Page |2105

2. IMPLEMENTATION
Multipliers are an important unit of microprocessor and DSP applications. Area, power and latency are the factors that need to be

monitored while designing a multiplier. The way that the exhibition of any framework is dictated by the presentation of the

slowest component in framework, multiplier being the slowest component, voluminous research has been accomplished for low

power multipliers.

2.1 Vedic Multiplier

Vedic mathematics has a total of 16 sutras and 13 sub sutras, each of the 16 sutras have been used for various mathematical

operations like algebra, multiplication, addition, division, trigonometry, calculus, etc. There are 2 Vedic sutras used for

multiplication, Urdhva–Tiryagbhyam and Nikhilam Navatascaramam Dasatah sutra. The latter can be applied only if the

multiplicand and multiplier are closer to the bases of 10 (10, 100,1000,10000 and so on), hence usually Urdhva–Tiryagbhyam

sutra is used. It is additionally alluded to as vertically and crosswise algorithm.

In this project, the Vedic methodology is implemented as shown in figure 1, which describes the Vedic multiplier methodology.

2×2 Vedic multiplier is the leaf module for an N×N multiplication. For a 4×4 multiplication, the multiplicand and multiplier are

divided into two groups of 2bits each. 2×2 multiplication is performed on these groups and the partial products are obtained.

These partial products are then modified to get an 8-bit product term.

Fig. 1: Structure of Vedic Multiplier

2.2 Booth’s multiplication algorithm

Signed multiplication is a cautious procedure. With unsigned multiplication compelling reason to keep the sign of the number into

deliberation. Despite in signed multiplication, the alike procedure cannot be enforced because of the signed number in 2’s

compliment structures which would yield and erroneous result if multiplied in an analogues manner to unsigned multiplication.

Booth’s algorithm preserves the sign of the outcome. There are three noteworthy strides to any multiplication. In the initial step,

the incomplete items are created. In the second step, the partisan products are downsized to one row of final sums and carries. In

the third step, the final sums and carries are added to produce the outcome.

Fig. 2: Structure of Booth’s algorithm

file:///C:/omak/Downloads/www.IJARIIT.com

V. Vaishnavi K., Hiremath Gurusiddayya; International Journal of Advance Research, Ideas and Innovations in Technology

© 2019, www.IJARIIT.com All Rights Reserved Page |2106

A modified booth multiplier should focus on the accompanying things: 1) on decreasing the total number of partial items created.

This may incorporate any coding strategies or decrease of calculation unpredictability of the generation of partial products. 2) A

substantial amount of delay is devoured in discovering two’s complement of the multiplicand. So this delay ought to be

diminished. 3) The optimization of the adder structure. Once partial products generated, they have to be gathered and included in

an orderly way devouring less deferral. This may consider the utilization of parallelism of the procedure. The structure of Booth’s

method is illustrated in figure 2.

Booth's algorithm depends on recoding the multiplier, A, to a recoded esteem Ck, leaving the multiplicand, B unaltered. In Booth

recoding, every digit of the multiplier can accept negative as well as positive and zero quantities.

Let us consider Multiplicand B ‘m’ bits wide depicted as Bm-1Bm-2…B2B1B0 and multiplier A again ‘m’ bits wide portrayed as Am-

1Am-2….A2A1A0. Both of these are signed (two’s compliment) binary numbers. As per Booth’s algorithm,

B×A=B×{(Sn-1×2m-1)+(Sm-2×2m-2) ……(S2×22))+(S1×21))+(S0×20)

Where each Sk for m-1<=k<=0, is a value which depends upon the value of A, and can be found as explained in the following

steps:

Step 1: Affix A by a ‘0’ on LSB, we will call this bit as Z

Step 2: Now a prompt set of q bits, where q = 2, for radix 2 booth algorithm, and label each collection Ck , where m-1<=k<=0,

The decree to compose each set Ck is such that

Ck = (Ak Ak-1), if m-1<=k<=0 and Ck= (AkZ) for k=0.

This process will result in ‘m’ collections such that:

Cm-1= (Am-1 Am-1)… C1= (A1 A0), C0= (A0 Z)

Step 3: Now based on the value of Ck, where m-1<=k<=0, find out Sk, where the value of Sk is outlined in the subsequent table

for all possible combinations of values of a pair Ck

Table 1: Radix-2 Operations to be performed on the multiplicand

Ck Sk

00 0

01 +1*B

10 -1*B

11 0

Now equation (1) can re-written as,

B×A= (B×pm-1) + (B×pm-2)……+ (B×p1) + (M×p0)

Where,

pm-1 = Sm-1×2m-1, pm-2 = Sm-2×2m-2….p1=S1×21, p0=S0 ×20

B×A= ppm-1×2m-1+ ppm-2×2m-2…..+ pp1×21+ pp0×20

Where ppn-1 = (B× pm-1), ppm-1= (B× pm-2) …pp1= (B× p1), pp0= (B× p0) are referred to as partial products.

Step 4: Add these ‘m’ partial products as shown in the equation below to get the final product.

B×A= ppm-1×2m-1+ ppm-2×2m-2…..+ pp1×21+ pp0×20

Note that equation (3) is the same as equation (2), reproduced for lucency.

It is important to note that, we will have to sign extend the partial products, to give rise to equal in width before adding.

The Modified Booth Multiplier or Radix-4 Booth’s multiplier was recommended by O. L. Macsorley in 1961. The recoding

strategy is generally adapted to generate the partial products for execution of huge parallel multipliers, which receives the parallel

encoding plan.

In radix-2 booth’s algorithm, in the event that multiplying 2 m bits values, we possess’ partial products to add. Utilizing Radix-4

booth’s multiplier, the number of partial products is diminished to 'm/2' on the off chance that we are multiplying two’ bits

numbers, if ‘m’ is even number, or ‘(m+1)/2’, if ‘m’ is an odd number. By decreasing the number of partial products, one can

adequately accelerate the multiplier by a factor roughly generally equivalent to 2. On the off chance that takes 'q'=3, and makes

accumulations of ‘q’ bits taken in one Ck. Where N-1<=k<=0 where N = m/2, for ‘n’ is even, N= (m+1)/2 if ‘m’ is odd. From the

multiplier R, such that:

Ck = (A2k+1 A2k A2k-1), for N-2<=k<=1

Ck = (A2k+1 A2k Z), for k=0 and Z=0

Ck = (A2k+1 A2k A2k-1), if ‘m’ is even and k=N-1

(1)

 (2)

(3)

file:///C:/omak/Downloads/www.IJARIIT.com

V. Vaishnavi K., Hiremath Gurusiddayya; International Journal of Advance Research, Ideas and Innovations in Technology

© 2019, www.IJARIIT.com All Rights Reserved Page |2107

We may need to sign-extend ‘B’ by one bit if the CN-1 contains less than ‘q’ or 3 bits. This will dependably occur when ‘m’ is odd.

The quantity of partial products will likewise diminish from 'm' to 'N'. All the fractional items in condition (3), which are

multiplied by 2×, where ‘×’ is odd will vanish. That implies as opposed to moving an incomplete item (before summing them up

for the last item) by '1' bit, for example, increasing it by 21 in every fractional item, we will move by 2 bits rather, for example

multiplying it by 22. Table 1 will presently change to table 2 given beneath:

Table 2: Radix-4 Operations to be performed on multiplicand

Ck Sk

000 0

001 +1*B

010 +1*B

011 +2*B

100 -2*B

101 -1*B

110 -1*B

111 0

Final product equation will now become:

B×A= ppm-1×22*(m-1) + ppm-2×2 2*(m-2)…..+ pp1×21+ pp0×20

Where,

ppN-1 = B×SN-1, ppN-2 = B×SN-2 …., pp1=B*S1, pp0 = B*S0

ppk are called partial products.

The radix-4 booth multiplier equation can be written as,

B×A= B×SN-1×22*(N-1) + B×SN-2×22*(N-1) + …. + B×S1×21 +B×S0×20

Note that all the terms which enclose multiplication by 2 to the power ‘x’, where ‘x’ is an odd number have vanished, referring

that while the addition of the partial products, each partial product will be moved by 2 bits rather than 1 bit.

Radix 8 booth encoding multiplier utilizes 4-bit encoding plan. Because of that number of incomplete item diminish by 33%

factor. Be that as it may, the circuit intricacy additionally increments as a contrast with a past rendition of booth multiplier.

Execution of the radix multiplier can be improved by presenting parallelism which brings about lessening the number of

estimation stages.

For a gathering of 4-bits, the Signed Multiplier Digit is determined in the table. 3 which characterize Radix-8 Booth are recoding

technique for every conceivable mix in the binary input where B is the Multiplier.

Table 3: Radix-8 Booth’s recoding technique

Ck Sk

0000, 1111 0

0001, 0010 +1*B

0011, 0100 +2*B

0101, 0110 +3*B

0111 +4*B

1000 -4*B

1001, 1010 -3*B

1011 -2*B

1101, 1110 -1*B

There will be four partial products.

To diminish the number of partial products included while multiplying the multiplicand higher radix Booth’s method is a standout

amongst the most notable systems used. Radix-16 Booth method which examines a series of five bits with the algorithm shown

here:

(a) Elongate the sign bit 1 position if necessary to assure that m is even.

(b) Affix 0 to the right of the LSB of the multiplier.

Signed multiplier digit for the group is defined in table 4 as per the Booth’s recoding technique for every binary combination.

Table 4: Radix-16 Booth’s recoding strategy

Ck Sk

00000, 11111 0

00001, 00010 +1*B

00011, 00100 +2*B

00101, 00110 +3*B

00111, 01000 +4*B

(4)

(5)

()

file:///C:/omak/Downloads/www.IJARIIT.com

V. Vaishnavi K., Hiremath Gurusiddayya; International Journal of Advance Research, Ideas and Innovations in Technology

© 2019, www.IJARIIT.com All Rights Reserved Page |2108

01001, 01010 +5*B

01011, 01100 +6*B

01101, 01110 +7*B

01111 +8*B

10000 -8*B

10001, 10010 -7*B

10011, 10100 -6*B

10101, 10110 -5*B

10111, 11000 -4*B

11001, 11010 -3*B

11011, 11100 -2*B

11101, 11110 -1*B

3. SIMULATION RESULTS
3.1 Vedic Multiplier

Figure 3 shows the simulation result of the Vedic multiplier.

Fig. 3: Waveform of Vedic multiplier

The RTL schematic of the Vedic multiplier is as shown below:

Fig. 4: RTL schematic

3.2 Booth’s Multiplier

Fig. 5: Radix-2 booth multiplier waveform

The RTL schematic is as shown below:

Fig. 6: Radix-2 booth multiplier RTL Schematic

file:///C:/omak/Downloads/www.IJARIIT.com

V. Vaishnavi K., Hiremath Gurusiddayya; International Journal of Advance Research, Ideas and Innovations in Technology

© 2019, www.IJARIIT.com All Rights Reserved Page |2109

Fig. 7: Waveform of Radix-4 Booth’s multiplier

The figure below shows the RTL schematic of the Radix-4 multiplier.

Fig. 8: RTL schematic of Radix-4 Booth’s multiplier

Fig. 9: Waveform of Radix-4 Booth’s multiplier

The RTL schematic is as shown in the below figure:

Fig. 10: RTL schematic of Radix-8 Booth’s multiplier

Fig. 11: Waveform of Radix-16 Booth’s multiplier

file:///C:/omak/Downloads/www.IJARIIT.com

V. Vaishnavi K., Hiremath Gurusiddayya; International Journal of Advance Research, Ideas and Innovations in Technology

© 2019, www.IJARIIT.com All Rights Reserved Page |2110

The RTL schematic is as shown in the below figure.

Fig. 12: RTL schematic of Radix-16 Booth’s multiplier

The Device utilization summary of Vedic, Radix-2, 4, 8 and 16 Booth’s multipliers are shown below:

Table 5: Summary of Vedic, Radix-2, 4, 8 and 16 Booth’s multipliers

Spartan 6

Design Timings(ns) Power (mW)
Area

Slices LUT’s IOB’s

Vedic Multiplier 30.45 20 558 64

Radix-2 Booth’s Multiplier 14.19 20 379 64

Radix-4 Booth’s Multiplier 13.03 20 331 64

Radix-8 Booth’s Multiplier 23.93 32 337 63

Radix-16 Booth’s Multiplier 16.40 20 584 64

4. CONCLUSION
In this paper, 16 bit Vedic, Radix-2, 4, 8 and 16 are carried out. It can be seen that the delay consumed for Vedic multiplier is

highest and the lowest for the Radix-4 Booth’s multiplier. The area utilized for Radix-16 Booth’s multiplier is largest.

The selection of algorithm is done by the designer based on values of constraints i.e. area, power and timing. An algorithm that

requires a larger area but is the fastest cannot be used in an application in which area is critical. The utilization of an algorithm

depends on the application.

5. REFERENCES

[1] Patel, Pranav, Ashish Shandilya, Nisarg Brahmbhatt, Kshitij Raval, and Dipankar Deb. "Vedic and conventional methods of

N× N Binary Multiplication with hardware implementation." In 2015 International Conference on Smart Sensors and Systems

(IC-SSS), pp. 1-6. IEEE, 2015.

[2] Meghana, V., S. Sandhya, R. Aparna, and C. Gururaj. "High speed multiplier implementation based on Vedic Mathematics."

In 2015 International Conference on Smart Sensors and Systems (IC-SSS), pp. 1-5. IEEE, 2015.

[3] Kaur, Sukhmeet, and Manpreet Singh Manna. "Implementation of modified booth algorithm (radix 4) and its comparison with

booth algorithm (radix-2)." Advance in Electronic and Electric Engineering 3, no. 6 (2013): 683-690.

[4] Design and Comparison of High Speed Radix-8 and Radix-16 Booth’s Multiplier, International Journal of Computer

Applications (0975 – 8887) Volume 181 – No.2, July 2018

[5] Madrid, Philip E., Brian Millar, and E. E. Swartzlander. "Modified booth algorithm for high rdix multiplication." In

Proceedings 1992 IEEE International Conference on Computer Design: VLSI in Computers & Processors, pp. 118-121. IEEE,

2002

file:///C:/omak/Downloads/www.IJARIIT.com

