Comparative study on analysis and design of RCC and composite structure

Pallavi Harish Wagh
waghpallavi26@gmail.com
Dr. D Y Patil School of Engineering and Technology, Pune, Maharashtra

Dr. S. K. Kulkarni
sanjaykulkarni.sk@gmail.com
Dr. D Y Patil School of Engineering and Technology, Pune, Maharashtra

Vishwajeet Kadlag
kadlagvishwajeet@gmail.com
Dr. D Y Patil School of Engineering and Technology, Pune, Maharashtra

ABSTRACT

This paper deals with the Comparative Study of the composite and concrete structure. The composite structure is more prominent over steel and concrete structure in relation to Strength, Costs, and Time Period requirements. There is no need for formwork because the steel beam is able to sustain its self-weight of steel and concrete, by itself or with the assistance of a few temporary props. This Paper also deals with the design of composite building structures with a fixed base. In this paper Seismic analysis of a multi-story residential building is made by using different construction materials like Concrete, Structural Steel and Composite of Structural Steel and Concrete. Effect of the building is studied with respect to base shear, total dead load, and story drift values in both X- and Y- direction. Steel-concrete composite systems for buildings are built by connecting the steel beam to the concrete slab or profiled deck slab with the help of mechanical shear connectors so they seem like a single unit and act accordingly. In the present work, the steel-concrete composite with RCC options is chosen for the comparative study of G+21 story building which is situated in earthquake zone-III and for earthquake loading, the provisions of IS: 1893 (Part1)-2002 is considered. Here, we used ETAB Software for three-dimensional modelling and the analysis of the structure.

Keywords—Composite beam, Composite column, Base shear, Total dead load, Cost, IS1893 (part1)-2002, Composite Structure, RCC, ETABS

1. INTRODUCTION

The most important and most frequently encountered combination of construction material is the steel and concrete and it has applied in many Multi-Story commercial buildings and factories as well as in bridges too. These materials can be used in mixed structural systems, for example, concrete cores encircled by steel tubes as well as in composite structures, where members consisting of steel and concrete act together composite.

The purpose of this work is to introduce steel-concrete composite members and construction: to explain the composite action of the two different materials, to show how the structural members are used, particularly in building construction and there advantage over concrete structures, to give a brief introduction to the composite building structure.

Steel-concrete composite systems have become quite popular in recent times because of their advantages over conventional construction. Composite construction combines the better properties of both i.e. concrete and steel and results in speedy construction. In the present work included Comparative study of R.C.C. and COMPOSITE (G+21 STORY) building. The comparative study includes the deflections of members, sizes and their material consumptions in composites with respect to R.C.C. and Steel section. The seismic forces and the behaviour of the building under the seismic condition in composite with respect to R.C.C. and Steel and total cost of the building.

2. SIGNIFICANCE

In a composite structure, the advantage of bonding property of steel and concrete is taken into consideration so that they will act as a single unit under loading. These essentially different materials are completely compatible and complementary to each other; they have almost the same thermal expansion; they have an ideal combination of strengths with the concrete efficient in compression and the steel in tension; concrete also gives corrosion protection and thermal insulation to the steel at elevated temperatures. In general, since composite systems realize the most efficient use of steel, reinforced concrete, and composite members in a structural system, this type of construction is often more economical than traditional either all-steel or all-reinforced concrete construction. Steel and
composite beams in a floor system lead to reduced floor depth and lighter overall floor weights. This, in turn, leads to lower building mass and more economical foundations.

3. PROBLEM STATEMENT
A G+21 RCC and composite structure having plan dimensions as 40mX40m are modelled and analysed in ETABS. The total height of the building is 77m having typical story height of 3m. The size of the beam is (300x500) mm and column sizes are taken as per concrete design calculations. For the columns, the values are:
(a) 400x650 and
(b) 350X550

The structure is analysed for seismic zone III under medium soil condition. The grade of concrete is M25 for slab and beam, for column M30 grade is used for RCC and for Composite and grade of steel is HYSD500. The basic parameters considered for the design are:
(a) Live load: 1.5 KN/m²
(b) Wall load: 14 KN/m (230 mm external wall)
(c) Earthquake parameters considered are Zone: III
(d) Soil type: Hard soil Importance factor: 1
(e) Response reduction factor: 3

The above-mentioned building models are analysed using Response spectrum method. The building models are analysed using ETABS software. The different parameters such as time period/mode shapes, lateral displacement, story drift, axial forces, bending moments, base shear of the structure are compared for composite and RCC structures.

4. MATERIAL PROPERTIES
Composite beams, subjected mainly to bending, section consist of composite action with a flange of reinforced concrete. To act together, mechanical shear connectors are provided to transmit the horizontal shear between the steel beam and concrete slab, ignoring the effect of any bond between the two materials. These also resist uplift forces acting at the steel-concrete interface. If there is no connection between the steel beam and concrete slab interface, a relative slip occurs between them when the beam is loaded. Thus, each component will act independently. With the help of deliberate and appropriate connection between concrete slab and steel beam, the slip can be minimized or even eliminated altogether. If slip at the interface is eliminated or drastically reduced, the slab and steel member will act together as a composite unit.

In composite columns, both the steel and concrete would resist the external loading by interacting together by bond and friction. Additional reinforcement in the concrete encasement prevents excessive spalling of concrete both under normal load and fire condition. The principal merit of steel-concrete composite construction lies in the utilization of the compressive strength of concrete slabs in conjunction with steel beams, in order to enhance the strength and stiffness of the steel girder. More recently, composite floors using deck slab have become very popular in the West for high rise office buildings. Composite deck slabs are particularly competitive where the concrete floor has to be completed quickly and where a medium level of fire protection to steel work is sufficient. However, composite slabs with profiled deck slab are unsuitable when there is heavy concentrated loading or dynamic loading in structures such as bridges. The alternative composite floor in such cases consists of the reinforced or pre-stressed slab over steel beams connected together to act monolithically.

5. MODELLING AND ANALYSIS
The modelling for both RCC and composite structures are carried out in ETABS. Given below are the screenshots of the structure modelled in software.

Fig. 1: Screenshot of G+7 RCC model in ETABS
Fig. 2: Screenshot of G+14 RCC model in ETABS

Fig. 3: Screenshot of G+21 RCC model in ETABS

Fig. 4: Screenshot of G+7 CS model in ETABS
Fig. 5: Screenshot of G+14 CS model in ETABS

Fig. 6: Screenshot of G+21 CS model in ETABS

5.1 Base Shear

Table 1: Base shear as calculated by software for RCC and composite structure

<table>
<thead>
<tr>
<th>No. of Stories</th>
<th>7</th>
<th>14</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC</td>
<td>139230.6708</td>
<td>284308.766</td>
<td>424619.1059</td>
</tr>
<tr>
<td>CS</td>
<td>137097.3903</td>
<td>234559.974</td>
<td>351390.645</td>
</tr>
</tbody>
</table>

Fig. 7: Comparison of base shear for RCC and composite structures
5.2 Axial Force

Table 2: Values of Axial Force for RCC and Composite Structure

<table>
<thead>
<tr>
<th>No. of Stories</th>
<th>7</th>
<th>14</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC</td>
<td>2752.9422</td>
<td>2754.2096</td>
<td>3719.4195</td>
</tr>
<tr>
<td>CS</td>
<td>1990.5945</td>
<td>2469.162</td>
<td>3541.60844</td>
</tr>
</tbody>
</table>

![Axial Force Graph](image)

Fig. 8: Comparison of Axial Forces for RCC and Composite Structure.

5.3 Shear Force

Table 3: Values of Shear Force for RCC and Composite Structure

<table>
<thead>
<tr>
<th>No. of Stories</th>
<th>7</th>
<th>14</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC</td>
<td>18110.9974</td>
<td>17722.514</td>
<td>17759.8571</td>
</tr>
<tr>
<td>CS</td>
<td>17174.8571</td>
<td>14910.9974</td>
<td>16304.9673</td>
</tr>
</tbody>
</table>

![Shear Force Graph](image)

Fig. 9: Comparison of Shear Forces for RCC and Composite Structures.

5.4 Maximum Bending Moment

Table 4: Values of Max. Bending Moment for RCC and Composite Structures

<table>
<thead>
<tr>
<th>No. of Stories</th>
<th>7</th>
<th>14</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC</td>
<td>362219.947</td>
<td>354203.418</td>
<td>355322.141</td>
</tr>
<tr>
<td>CS</td>
<td>343497.141</td>
<td>298219.9473</td>
<td>326099.3468</td>
</tr>
</tbody>
</table>

![Maximum Bending Moment Graph](image)
5.5 Story Drift

Table 5: Values of Story Drift for RCC and Composite Structures

<table>
<thead>
<tr>
<th>No. of Stories</th>
<th>7</th>
<th>14</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCC</td>
<td>2.13</td>
<td>2.71</td>
<td>2.78</td>
</tr>
<tr>
<td>CS</td>
<td>1.35</td>
<td>1.85</td>
<td>2.15</td>
</tr>
</tbody>
</table>

Fig. 10: Comparison of Bending Moment for RCC and Composite Structures

Fig. 11: Comparison of Story Drift for RCC and Composite Structures.

6. DISCUSSIONS

- As the results show, the composite option is better than R.C.C. Because the Composite option for high rise building is best suited.
- Weight of composite structure is quite low as compared to RCC structure due to smaller structural steel sections are required compared to non-composite construction. Therefore, reduction in the overall weight of the composite structure compared to the RCC construction results in fewer foundation costs.
- It is clear that the nodal displacements in a composite structure, by both the methods of seismic analysis, compared to an R.C.C. structure in all the three global directions are less which is due to the higher stiffness of members in a composite structure compared to an RCC structure.
- Composite structures are more economical than that of RCC structure. Composite structures are the best solution for high rise structure as compared to RCC structure. Speedy construction facilitates quicker return on the invested capital and benefits in terms of rent.
7. CONCLUSIONS

- Base Shear is the component of Weight hence RCC structures have higher values of Base Shear than Composite Structure. Fig 7 shows the variation of base shear according to increased storey levels for both RCC and Composite Structures. The percentage difference between the both is 18%.
- From Fig 8 shows the variation of axial forces in RCC and composite structure. RCC structures have higher values of Axial Forces due to the increased weight and less ductile nature of structural elements than composite structures. Percentage difference varies from 11% to 28%. As the number of the storey increases the difference between both values goes on increasing.
- From Fig 9 and Fig 10, RCC structures have higher values of Shear Force and bending moment due to the increased dead weight of the structure. Percentage difference varies from 8% to 16%. As the number of the storey increases the difference between both values of shear force goes on increasing. RCC structures have higher values of Bending Moment due to the increased weight of structural elements than composite structures.
- Fig 11 shows the variation of storey drifts of RCC and Composite Structures. Percentage difference varies from 22% to 32%.

8. REFERENCES

[7] Prof. Prakash Sangave, Mr. Nikhil Madur, Mr. Sagar Waghmare, Mr. Rakesh Shete, Mr. Vinayak Mankondi, Mr. Vinayak Gundla, February-2015, “Comparative Study Of Analysis And Design Of R.C. and Steel Structures”