
Makker Ankita, Nayak Gaurav; International Journal of Advance Research, Ideas and Innovations in Technology  

© 2019, www.IJARIIT.com All Rights Reserved                                                                                              Page |942  

 

ISSN: 2454-132X 

Impact factor: 4.295 
(Volume 5, Issue 3) 

Available online at: www.ijariit.com 

Natural language to SQL 
Ankita Makker 

ankitamakker@iiitdmj.ac.in  

PDPM Indian Institute of Information Technology, 

Design and Manufacturing, Jabalpur, Madhya Pradesh 

Gaurav Nayak 

gauravnayak@iiitdmj.ac.in  

PDPM Indian Institute of Information Technology, 

Design and Manufacturing, Jabalpur, Madhya Pradesh 
 

ABSTRACT 
 

In this research, an intelligent system is designed for users to access the database using natural language. It accepts natural 

language input and then converts it into an SQL query. Using query language for dealing with databases has always been a 

professional and complex problem. The system currently handles single sentence natural language inputs and concentrates on 

MySQL database system. The system accommodates aggregate functions, multiple conditions in WHERE clause, join 

operations, advanced clauses like ORDER BY, GROUP BY and HAVING. The natural language statement goes through 

various stages of Natural Language Processing like morphological, lexical, syntactic and semantic analysis resulting in SQL 

query formation. Intelligent Interface is the need for database applications to enhance efficient interaction between user and 

DBMS. The research focuses on making the system more dynamic. Improvements have been introduced to the system by 

incorporating preprocessing of text, named entity recognition, building hierarchical relations, semantic similarity and 

negation handling using dependency graphs. 

 

Keywords— Natural Language Processing (NLP), SQL, Semantic similarity, context, Named entity recognition, Dependency 

graphs 

1. INTRODUCTION 
Today, information retrieval technologies are being highly used in various institutions, organizations, companies to manage their 

information systems and processes. Every Relational Database Management System (RDBMS) uses Structured Query Language 

(SQL) for querying and maintaining the database. 

(a) This makes the service limited to those individuals who are familiar with data query methods. It is a major problem for all 

those who are not technically knowledgeable in this domain to write queries with the right syntax in SQL. 

(b) Accessing the database and manipulating it is a basic necessity, not knowing SQL introduces dependence, leads to reduced 

productivity. 

 

Artificial Intelligence (AI) and Linguistics, when combined to develop programs, processing and understanding the natural 

language, becomes possible, thereby helping in its conversion to a query language. Natural Language Processing (NLP) is a 

component of Artificial Intelligence. It is the ability of a computer program to understand human speech as it is spoken. The 

development of NLP applications is challenging because the natural language may be easy for people to learn and use but 

computers traditionally require programming language that is precise, unambiguous and highly structured. 

 

However, human speech is not always precise, it is often ambiguous and the linguistic structure can be different for a sentence 

with similar meaning. Despite such challenges, NLP can be used to interpret the free text and make it analyzable. NLIDBS are 

built to optimize search results and produce information with more accuracy. The aim of the system is to reduce the complexity of 

database querying. The approach used is similar to that introduced by Nandan Sukthankar, 2017 

 

[2] Who made an NLIDB system to incorporate complex queries using table mapping, attribute mapping and clause tagging to 

generate the resultant query? A similar approach was used by Garima Singh and Arun Solanki, 2016 [1]. 

 

The present research extends the existing work further to make the system robust by making it more dynamic. This system 

incorporates contextual, semantic and dependency information to enhance its performance on unseen entities and negation 

handling. This system uses Natural Language Processing and a rule-based approach, it does not introduce over-fitting in any way 

and generalizes well for any database. 
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2. LITERATURE SURVEY 
2.1 Dependency Parsing 

There are ways in which the structure of a Natural Language can be described: 

(a) POS Tagging: After tokenization makes a prediction of which tag or label most likely applies in the context and tagging them. 

(b) Dependency Parsing: It describes the type of syntactic relation that connects the words (child to the head). 

 

Examples can be seen in figure 1 and figure 2. 

 

Filbert Reinaldha and Tricya E. Widagdo, 2014 [3] also used the latter in their work. This system looks at the individual tags with 

respect to context to identify important words like nouns or verbs and identifies a relationship between those words to understand 

dependencies. 

 

SpaCy (Library for advanced Natural Language Processing) features a fast and accurate syntactic dependency parser, which is 

used for analyzing the user query here. 

 

 
Fig. 1: Text, lemma, POS, tag, dependency, stop-word 

 

 
 

Fig. 2: Dependency Graph for ‘List students not enrolled in Physics or NLP’ 

 

2.2 Named entity recognition 

Phrase Matcher can be used to match large terminology lists which are predefined. Entity recognition helps in labelling contiguous 

spans of tokens to get an idea of words that the system has not seen before and handle such cases using contextual knowledge. 

Wordnet synsets (hypernym and hyponym) can be used for a similar purpose. The default model identifies a variety of named and 

numeric entities, including companies, locations, organizations and products. Arbitrary classes can be added to the entity 

recognition system and model can be retrained. An example can be seen in figure 3 and figure 4. During the training, examples 

were batched up using SpaCy’s minibatch, and 0.5 was chosen as the droup-out ratio. 

 

 
Fig. 3: “Jon teaches Physics” with the default model 

 

 
Fig. 4: “Jon teaches Physics” with a re-trained model to identify Physics 

 

2.3 Matching 

Previously built systems handled sentences which explicitly mention the attribute names as they are in the Database (Ghosh et al., 

2014) [4]. Some systems like (Nandan Sukthankar., 2017) [2] handle the problem by a specific substring algorithm (rule-based 

sequence matching). User can query the system in any way and making it restricted limits the performance of the system. To 

overcome that and do the match in a more efficient way, a rule-based algorithm that works on sequence matching with semantic 

similarity (cosine similarity) is used to map the words to attributes and tables. The similarity is determined by comparing word 

vectors or word embeddings, multi-dimensional meaning representations of a word. Word vectors can be generated using an 

algorithm like word2vec. Spacy’s model that comes with built-in word vectors is used here. 

 

2.4 Table-Attribute Mapping 

Queries involving multiple tables and advanced clauses like having or group by and aggregate functions were not incorporated 

earlier, (Kaur and J, Jan 2016) [5]. nQuery [2] incorporates advanced clauses along with all the simple queries and generalizes 
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well on different databases. This system also extracts overall database details and uses verb lists, noun lists, implicit hash maps 

and matching algorithms to map attributes and tables to the words in the sentence. This system partially solves the problem of 

implicit queries by maintaining hierarchical knowledge from the database schema. 

 

 
Fig. 5: Similarity between salary and income 

 

2.5 Negation handling 

Most of the systems skip negation handling or simply handle it by inverting conditions on attributes occurring consecutively with 

negation term in the sentence like in (A.R.FALLE, April 2017) [6]. Another way to do it is by considering n-grams, but all of 

these approaches fail as the window would be predefined and many a times parameter corresponding to constant is missing in the 

sentence (implicit cases). This research focused on handling implicit queries, which helped understanding dependencies between 

various words in the sentence with the negation term. It is important to understand what all parameters are affected with that 

negation, else results can completely change no matter the amount of processing done to produce it, thereby affecting performance 

drastically. 

 

One can see, that a rule-based system considering all cases is never guaranteed. The Deep Learning systems that are now coming 

up are not generalized that well for any database. Research is going on for some larger datasets including complex queries like 

Spider that can enhance the performance of such strong networks like SQLNet [7]. Another such network is SQLova [8], it is a 

neural semantic parser translating natural language utterance to SQL query. 

 

But this system is not sensitive to the database information and is not computationally intensive. It generalizes well for any 

database, mostly covers all cases and is easily implemented. 

 

3. PROPOSED METHODOLOGY 
From the above literature survey, analysis of shortcomings of the referred papers and applications along with the future work 

mentioned was done. The system proposed aims to go beyond the accomplished work. The proposed system is designed to 

overcome the shortcomings of the existing systems. Input is a natural language sentence, which is then passed through various 

phases of Natural Language Processing to form the final SQL query (Text pre-processing, Analysis, Table attribute Mapping, 

Filtering and Query Generation). 

 

3.1 Phase 1. Pre-processing stage 

(a) In this stage, the text is converted to a simpler form. 

 

Table 1: Dictionary 

 
 

(b) The data is cleaned to remove special characters. 

(c) Tokenization and Tagging take place. ’NLTK’ package is used for tokenization and Stanford POS Tagger is used for tagging 

the tokenized array. 

(d) Cases are restored, proper nouns are converted to uppercase. 

(e) In this stage, dependency parsing of text is done and a long term dependency is maintained in a bottom-up fashion, that helps 

identify the effect negation terms have on the constants in the conditions of where clause. Negation handling is done by using 

an inversion array to invert conditions for corresponding negated constants. The constants can be the same as well so to handle 

dependencies position where that constant occurs plays a critical role. 

(f) The improvised system uses SpaCy’s retrained Named Entity Recognition model with abstract classes as per the data to 

identify entity types for implicit data making the system more robust. 

 

3.2 Phase 2. Analyze Tagged Tokens 

With the help of clause related data dictionary: 

(a) Prepare noun map and verb list from tagged tokens. 

(b) The tokens corresponding to various clauses like aggregate, order by, group by, etc. are also mapped with their respective 

nouns. 

(c) The decision whether the natural language statement represents a data retrieval query or DML query taken. 

 

3.3 Phase 3. Table Attribute Mapping 

(a) Prepare the table set using noun verb list. This is based on the fact that the table names are either nouns or verbs. The noun 

map is used to find the attributes that are most important for query generation. 

(b) Overall details are fetched from the database through its information schema and implicit maps are constructed. 
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(c) The table associated with the attribute and the clause tag is stored in an attribute-table map which is used in the final stage of 

query formation. This is done using the Matching algorithm which first checks for Sequence Matching of substrings (rule-

based) after stemming or lemmatizing and then in case an important word got no match, semantic match with a threshold 

greater than equal to 0.75 is used. For similarity score, cosine similarity is used. 

(d) The data obtained during this step i.e. table set and attribute-table map are most likely to be in the final query, which is filtered 

later. 

 

 
Fig. 6: Data flow diagram 

 

 
Fig. 7: Cosine similarity 

 

3.4 Phase 4. Filter redundancy and finalizing clauses 

(a) Queries are refined (clauses finalized - Having / Where) 

(b) The redundant tables and attributes are removed using some filter algorithms which combine results at different stages. One 

such combination is a table set after matches and implicit maps. 

 

3.5 Phase 5. SQL Query Generation 

(a) The templates used for the query formation will be according to the MySQL syntax. 

(b) According to the type of query selected in the second stage of the process (Analyze tagged tokens), the appropriate template 

is chosen. This process is similar to the one discussed in nQuery[2]. 

(c) As per final processing, filtered clause objects are substituted. The final check is done for negation constants to modify the 

query. 

 

Whatever concepts discussed are pipelined to retrieve the final query. They are activated for different cases. One such flow is 

depicted in Chart.8. In this example, NER and Negation are activated along with the other basic flow of preprocessing, 

construction of maps and mapping. 

In the other example shown in figure 9 Similarity is activated and an implicit query is generated 
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Fig. 8: Basic flow with example (Multi-table query) 

 

 
Fig. 9: A step closer to solve the problem of implicit queries (similarity case) 
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4. RESULTS 
Testing of the system is done on a synthesized corpus of natural language statements related to a university database. This system 

is designed for any complex database, though the input considered is a single length sentence. 

 

The similarity is activated and an implicit query is generated. A qualitative evaluation was done on the queries generated by the 

proposed methodology. The generated queries were classified as correct (C), partially correct (P) and incorrect (I). Queries are 

classified as correct when the results they produce are consistent with what was asked by the natural language query. 

 

The queries that are classified as partially correct are those which follows the required template partially and select the required 

tables. Incorrect queries are those which are not at all consistent with what was asked by the natural language query. 

 

Based on the above mentioned criteria comparison of the results of the proposed methodology with the existing nquery is done. 

Refer to Table 2, 3 and 4 for the comparative study between nQuery and the new proposed methodology. 

 

Table 2: Comparison between the proposed methodology and nQuery 

 
 

Table 3: Natural Language queries involving Negation 

 
 

Table 4: Aggregate functions and multi-table queries 
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Significant Improvement is observed. It outperforms all the existing systems when it comes to Negation Handling and Handling 

implicit cases. The partially correct cases are there because the subject could not be identified that well. Subject object 

identification limitations lead to reduced accuracy. But maintaining relationships significantly improves query construction as seen 

in example 1 of Table 2. The system responded correctly for approximately 87% cases for varying queries. 

 

5. CONCLUSION 
This paper proposes a development to a Natural Language to SQL system that uses Natural Language Processing in various 

phases and optimizes results. The fact that the user can not always have exact knowledge about the database entities, attributes or 

entries. It is about natural expectation to handle cases that are not exactly similar but mean the same thing. Other than semantic 

similarity, this system also focuses on context as it processes the text to identify entities, it also handles Negation conditions which 

are not a trivial matter in case of Implicit Queries. An attempt to solve implicit queries is done by maintaining relationships, 

implicit hash maps and look up dictionaries. The system currently partially solves this problem. Identifying subject object 

relationship from sentences is easier with dependency graphs but with ’WH’ questions, where the subject is not defined explicitly, 

predicting or identifying what we could be in a sentence is challenging. It can be an attribute from the same table or a referencing 

table. Research is still ongoing to solve this issue. Also, in a lot of similar systems, Complex queries are not being taken care of. 

But this system works for Simple as well as complex queries involving natural and inner joins. It works for Aggregate functions in 

queries, Advanced WHERE clauses, ORDER BY, GROUP BY, HAVING and LIMIT clauses, Basic implicit queries, DML 

Queries like INSERT, UPDATE and DELETE and negating queries as well. No system till date incorporates such a wide range of 

queries. 

 

6. LIMITATIONS AND FUTURE WORK 
(a) The failed translation is usually caused by a wrong dependency produced by the parser or some linguistic dependency. 

(b) The similarity system works on uses a threshold of 0.75, which can lead to wrong translations as well based on the training of 

the model. 

(c) Just how a sentence can be said in many ways meaning the same thing, multiple queries can be generated for it. It is possible 

that a natural language statement can result in multiple SQL queries. In future, Machine learning can be incorporated to 

choose the most efficient query. 

(d) This system can be made more flexible to handle not Only single sentence natural language input but multiple sentences as 

well. 

(e) A better algorithm to identify subject-object relationships for WH Questions can be developed. Deep Learning can be used as 

well to handle such implicit Queries in the future. 
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