
Sinha Anumita et al.; International Journal of Advance Research, Ideas and Innovations in Technology

© 2019, www.IJARIIT.com All Rights Reserved Page |435

ISSN: 2454-132X

Impact factor: 4.295
(Volume 5, Issue 3)

Available online at: www.ijariit.com

On the fly integration of applications using context aware approach
Anumita Sinha

anumita.s@somaiya.edu

K. J. Somaiya College of Engineering, Mumbai,

Maharashtra

Nishi Mehta

nishi.mehta@somaiya.edu

K. J. Somaiya College of Engineering, Mumbai,

Maharashtra

Pramod Bhakta

pramod.bhakta@somaiya.edu

K. J. Somaiya College of Engineering, Mumbai,

Maharashtra

Era Johri

erajohri@somaiya.edu

K. J. Somaiya College of Engineering, Mumbai,

Maharashtra

ABSTRACT

IT Applications have dominated every sector making the

services online, there is a heartfelt need to standardize these

applications so as when these applications when work in

conjugation give better results real time for any kind of queries

of customers maintaining levels of abstraction and information

hiding. This paper aims at proposing a model for the on fly

integration of the applications using context-aware self-

adaptation approach for application service to cater to the need

to integrate the data and services provided by the various

applications. Our research within this direction has depicted

the characteristics of the existing information and application

systems primarily of the QoS Broker Architecture and Service

Oriented Architecture. The latter part of this paper proposes an

architectural model to describe the fly culmination of services

by standardizing it and providing the result of a query using

the context-aware engine. The aim of this paper is to study the

existing systems, identify drawbacks and improve systems

integrations to achieve an optimized and dynamic platform for

real-time query processing.

Keywords— Service integration, Integrating and

standardizing applications, Normalize data, Context-aware,

Web service, UDDI, REST API, WS-QoS, tModel

I. INTRODUCTION
With the advent of an application for each purpose, it certainly

has allowed the user to lead an easier lifestyle. Moreover, as the

information has become ubiquitous, it should allow the user to

access a single platform for all of its queries to promote better

communication and collaboration. It has become a prime

concern now to integrate many legitimate independent systems

into one platform to provide platform integration.

The most usual method of the systems integration requirement is

data integration which is considered to be the most required

parameter for today’s technological approach. Traditionally,

organizations implement information and dynamic integration of

the systems to solve internal business issues. Consequently,

heaps of information systems were common in organizations.

The factors affecting the use of such a common platform may be

attributed to constantly reviewing and managing products with

new technologies, security, isolation, timing, relevancy and

many more. Applications are becoming popular as a basic

technology in the internet field. They are revolutionizing the

cutting edge of communication amongst the various applications

there exist. Using the need for pervasive computing and the

increased manifold use of mobile devices, the on-fly context-

aware application service becomes a necessity. This takes into

consideration to adapt the queries to the user's context such as

his type of Internet connection, language, specific work

environment, devices and preferences. Here, we introduce an on-

fly context-aware approach which culminates the dynamic

adaptations of application services. The proposed approach takes

into account the user's context along with the other requirements.

Thus, the literature suggests that this rises from users having to

access many databases containing similar data, wherein the

transfer and use of information amongst the databases were fairly

restricted.

The implementation is therefore divided into two parts, first

stage where we standardize the data obtained by the various

applications and the second stage wherein the user or client can

run queries to derive inferences using the context-aware engine

for processing.

2. MOTIVATING SCENARIO
Considering various applications that exist in today’s market,

redundancy is observed when the user tries to access a similar set

of information across multiple platforms to congregate and

deduce inferences with their individual efforts. To avoid this

situation it is essential to increase the focus on data integration

and platform integration in a pervasive environment [2]. Along

with the context of the services, there exists a need for adapting

dynamically in response to those context changes which can be

maintained by contextual contracts. Context information

required by a service is termed as a contextual contract.

Therefore to create an on-fly context-aware service for the

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V5I3-1302
mailto:anumita.s@somaiya.edu
mailto:nishi.mehta@somaiya.edu
mailto:pramod.bhakta@somaiya.edu
mailto:erajohri@somaiya.edu

Sinha Anumita et al.; International Journal of Advance Research, Ideas and Innovations in Technology

© 2019, www.IJARIIT.com All Rights Reserved Page |436

queries the user has, two types of processing needs to be elicited:

standardization of services and querying using on-fly context-

aware system. The former stage concerns the extraction of

relevant data and services from various applications and

ensuring they adhere to the QoS Models. In the latter stage, the

ability to adapt dynamically to the behaviors in response to

changing environments with the additional support of Natural

Language Processing (NLP) without explicit user intervention is

catered to. In Section IV, we explain using an example of how

the above proposition could be implemented with our

architecture.

3. EXISTING MODEL
The existing architecture of web services with an SOA

Framework is depicted along with the QoS Broker Model. In the

following section, the challenges imposed the existing model are

elaborated and the need for a new architecture is stated.

3.1 Web services architecture

A service-oriented architecture implements the design,

application and on-fly integration of user-requested services in

an extensible manner allowing expeditious, uniform responses to

satisfy the ever-changing customer requirements.

Fig. 1: The service-oriented modelling and architecture

method

It allows the simultaneous collaboration implemented through

open standards, thus increasing reuse and maintainability. Such

an architecture also segregates software applications into smaller

manageable, self-contained units of code referred to as the

services, to deliver relevant information across various channels.

Services are often composed to create a business task.

Eventually, business tasks are combined to execute a business

method. And business processes functionally gather to form

enterprise applications.

The subsequent sections in this paper elaborate on how the data

across applications could be integrated as services to bring closer

the different functional contexts by identifying an on-fly context-

aware approach and presenting the user who does not need to

recognize the underlying implementation technology and is just

concerned with the inference posited to a particular query. The

design plan for an SOA has a number of important activities and

decisions with respect to the consumer and provider. These

activities influence the integration, enterprise and application

architectures. The provider’s activities consist of all the activities

of the consumer.

The service-oriented architecture and modeling as shown above

consists of three major activities: identification, specification

and realization of the services, the components and the flows.

Consequently, the service mechanisms facilitating QoS play a

vital aspect in the existing architecture, as many business and

other applications would want to avail of the services which

accurately meet the requirements inclusive of the lag time

experienced.

Challenges which cater the need of a more featured model are:

(a) A heterogeneous computing environment with many

software solutions running on multiple platforms which are

not intended to work together.

(b) Absence of real-time on-fly integration causing delays in

delivering information to each function across channels,

performance slowdown owing to complex integration issues.

(c) Discrete and independent autonomous business entities -

which lack good connectivity.

Fig. 2: QoS-Broker Model

The QoS characteristics are represented in UDDI registry by a

tModel, which allows reuse, standardization and specification, of

QoS related concepts. It enables the use of brokers to facilitate

service selection according to functional and non-functional

requirements, further which monitors to scrutinize QoS

attributes. [10]

A tModel typically consists of a key, name, description and a

Uniform Resource Locator (URL) that points to the location

where details about the actual concept could be identified. When

a service is published in the UDDI registry, a tModel

representing the service QoS information is created. It is then

eventually registered with the registry and referenced in the

binding template that portrays the deployment information of the

web service. In the tModel, every QoS metric is illustrated as a

Keyed Reference containing the name of a QoS attribute as

keyName and key Value containing the value. To update the QoS

information, the web service provider searches the UDDI

registry through the service publisher to locate the analogous

tModel. Consequent updation of QoS information takes place in

the tModel and also saves it back using the same key that was

assigned to it on creation. Service is called a ‘match’ if it fulfils

the customer’s functional requirements and QoS limitations. If

no matched service is found by the matching process, the service

selector returns an empty result to the customer. If multiple

services match the functional and QoS requirements, the service

selector calculates a QoS score for each matched service based

on the dominant QoS attribute specified by the customer, or on

the default dominant attribute, average response time. The best

service is assigned a score of 1, and the other services are

file:///C:/omak/Downloads/www.IJARIIT.com

Sinha Anumita et al.; International Journal of Advance Research, Ideas and Innovations in Technology

© 2019, www.IJARIIT.com All Rights Reserved Page |437

assigned scores based on the value of the dominant QoS

attribute. The top M services (M is the maximum number of

services to be returned as specified by the customer) with the

highest QoS scores are returned to the customer. If M is not

specified, one service is randomly selected from those services

whose QoS score is greater than Low Limit. [11]

4. PROPOSED MODEL
4.1 Standardization of Services

 REST API could be used as in alternative and integrated as it

uses XML/JSON to send or receive data in a human-readable

format which makes the on fly integration easier to incorporate

while requesting for parameters. It is assumed that the data

access of the applications from wherein the parameters would be

extracted would be rightly available to the user.

Fig. 3: Proposed Model for Standardisation of Services

The proposed model approaches following a data architecture

instead of application architecture. Ensuring the SOA framework

for Enterprise Application Integration (EAI), the functionality of

ESB has proved to be the framework architectural pattern of how

the integration is achieved. The core idea was to create services

that are small, distinct units of software providing specific

functionality and are reusable in every application. But only a

top-down approach could not achieve the main purpose of SOA.

And hence an ESB (Enterprise System Bus) is introduced in

place of a full propriety stack. ESBs can power the creation and

orchestration of services without requiring an application server

or another infrastructure component, eliminating the high

upfront costs of implementing SOA. They are developed

according to open standards which facilitates flexibility to the

business applications. Further, the WS-QoS Broker consisting of

the service selector, verifier and certifier and the service

publisher functions are posited in the existing model. In Web

Service architecture, the exchange and flow of services involve

the use of SOAP, WSDL and UDDI, but we introduce another

service call known as REST API which accepts requests from

the service consumer and directs them to the WS-QoS Broker.

REST analyses operations pertaining to the data and inherits

GET, POST, PUT, DELETE from HTTP which makes it easier

to document and write services against. Unlike SOAP, REST is

designed to be stateless, and its reads can be cached for better

performance and scalability. It also allows for easy, quick calls

to a URL for fast return responses. A request call with QoS

parameters like price, time for achieving the response, jitter,

bandwidth, latency, throughput and availability is given to the

above specified broker. Then the service selector finds the

services in the UDDI Registry to which it responds and verifies

the certificate provided. The Verifier and Certifier verifies and

certifies QoS with the service publisher and stores the certificate

in WSS. Further, the service selector in the WS-QoS broker

delegates the service to the ESB. ESB renders to provide

security, caching, transformation and orchestration of the

services. Alongside, it caters to secure messaging, transportation,

monitoring of the services, QoS and also works as an interceptor

and so on. It then devolves the service back to the application

through the mode of mediation. The application then passes it to

the service provider. Now the service consumer binds these

services from the provider and receives an output in XML

format. Repositories are maintained which consist of logs,

documentation and references of the services registered in the

UDDI Registry. It can be accessed by the application, UDDI

Registry and the WS-QoS Broker as well.

4.2 Context-Aware Approach for Querying

Fig. 4: Proposed Model for Context-Aware Approach

In this approach, we present a model for the retrieval of the query

posed by the user based in a conducive context environment. The

user or any application requests a semantic query along with the

context to the assistant interface. The interface then registers the

query with the service provider who interacts with various other

applications to obtain the required data. It first connects to the

Semantic Assistant Server to extract NLP equivalents. The

service provider is also aware of the context and the state of the

application’s request and passes it on to the context engine for

further processing. [4] The context engine being an abstract term

comprises of the information integration layer, the context

extraction layer, context service layer and an Awareness API for

extraction of context. The Information Integration Layer process

the information obtained from the provider. It then delegates it

to the next layer. The Context Extraction Layer processes the

different contexts provided to it by the various content providers.

file:///C:/omak/Downloads/www.IJARIIT.com

Sinha Anumita et al.; International Journal of Advance Research, Ideas and Innovations in Technology

© 2019, www.IJARIIT.com All Rights Reserved Page |438

It presents the output in the form of ontology. The OWL-SC

services include service description as three core concepts-

Profile, Process and Grounding and is associated with a

ContextAdaptationRule. [2] The OWL Analyser analyses the

OWL files. The obtained output is presented as an input to the

system along with the semantic description of the initial state of

the environment as well as the final goal state. The Context-

Aware Domain Builder evaluates the context correlating to the

current context and generates an instance. This instance needs to

be converted into PDDL (Planning Domain Definition

Language). The Context-aware Problem Builder then augments

the depiction by injecting into it relevant information from the

context. Planner and Generator are in charge of generating a

concrete representation of binding, process and grounding

phases. Next, the Context Service Layer procures this

representation and communicates to the Interactions Fragment

Repository which consists of the contextual contracts. Data from

the environment is processed by the Awareness API which is of

two types-The Fence API and the SnapShot API. Finally, it then

collects it from the above engine and sends it to the user as the

WS-BPEL generator produces the resulting concrete process

using the available context knowledge and grounding

information.

5. RESULTS
The proposed system is on-fly context-aware if it takes into

consideration the input contextual contract characteristics for the

queries to produce the related data to the user. It is applicable in

the case of a stock market application which needs to be real time

by constantly updating data from the news from various, often

distributed, sources [1].

Envisaging that a user wishes to run some queries concerning the

stock market regarding which stocks to buy, the first stage of

processing would encapsulate all the relevant and required data

from the various applications ensuring it meets all the QoS

parameters. A tModel entry is maintained for each service in the

UDDI Registry which primarily deals with the management and

communication between the Service Provider, WS QoS-Broker

and ESB Bus using REST API Protocols.[3] The standardised

output obtained from the various stock market applications such

as extracting all the information regarding a company, their past

trends, the number of shares bought, web crawling for updated

news or even analysing the social media posts are parsed and

stored in contextual contracts which does primarily two

functions, provide the functional services with the context

information and accordingly also update the other context

contracts. A number of inferences in the form of APIs can be

derived after processing it through the Context Engine. [5]

Moreover, the NLP Service Connector allows the user to raise

queries supporting multiple languages which adds to the

efficiency. The Google Awareness API is also implemented

which unifies signals such as time, location, places, beacons,

headphones, activity and weather in a single API, enabling us to

create powerful on-fly context-based features.

6. CONCLUSION
In this paper, we acknowledged the challenges that existed for

the data integration platforms and suggested an architecture of

hybrid technologies to overcome the barriers for successful

application integration. Describing QoS architecture and using

REST API for protocols with an underlying SOA framework for

the different services of the application to interact with each

other, provide a sustainable architecture to enable rapid

extraction of heterogeneous data from various applications. With

the standardised output, proper querying can be achieved by

using the on-fly context-aware approach to obtain a set of

inferences. Thus the data extracted by each application is

encapsulated as inference and thereby combining the various

technologies, the combined and optimised characteristics of the

proposed architecture procure the aim of on the fly integration of

various user requests and cater services.

7. REFERENCES
[1] Modeling and adapting to Context changes: The case of

stock market decisions making Jacques Ajenstat1, Amir

Padovitz, 2 Arkady Zaslavsky2 and Seng W. Loke 2.

[2] Scenario-Driven Development of Context-Aware Adaptive

Web Services, Mahmoud Hussein, Jian Yu, Jun Han, Alan

Colman

[3] Towards Context-Aware Adaptable Web Services Markus

Keidl, Alfons Kemper

[4] An Integrated context-aware Planning Approach to Self-

Adaptation Web Service Composition, Sihem Cherif,

 Raoudha Ben Djemaa, Ikram Amous

[5] Keidl M., Kemper A. (2004) A Framework for Context-

Aware Adaptable Web Services. In: Bertino E. et al. (eds)

Advances in Database Technology - EDBT 2004. EDBT

2004. Lecture Notes in Computer Science, vol 2992.

Springer, Berlin, Heidelberg

[6] Challenges in Ubiquitous Data Management Michael J.

Franklin EECS Computer Science Division University of

California, Berkeley, CA 94720, USA

[7] Network Access and Security Issues in Ubiquitous

Computing Upkar Varshney CIS Department, Georgia State

University, Atlanta

[8] Enhancing Web Process Self-awareness with Context-

aware Service Composition Angelo Furno

[9] Integrating Context-aware Pervasive Environments

Muhammad Taimoor Khan, Kashif Zia, Dr Nadeem

Daudpota, Dr S A Hussain1, Najma Taimoor .

[10] WS-QoSM: A Broker-based Architecture for Web Services

QoS Management Elarbi Badidi1, Larbi Esmahi2, M. Adel

Serhani3, Mohamed Elkoutbi4 1,3College of Information

Technology, United Arab Emirates University, PO.Box.

17555, Al-Ain, United Arab Emirates.

[11] An Efficient WS-QoS Broker-Based Architecture for Web

Services Selection T.Rajendran AP cum Research Scholar

Department of CSE SNS College of Technology

Dr.P.Balasubramanie Professor Department of CSE Kongu

Engineering College Resmi Cherian Final Year ME (CSE)

Department of CSE SNS College of Technology

[12] Challenges and Future of Enterprise Application Integration

Tariq Rahim Soomro College of Engineering and IT Al Ain

University of Science and Technology, Al Ain, UAE Abrar

Hasnain Awan Department of Information Technology,

SZABIST Dubai Campus, UAE.

file:///C:/omak/Downloads/www.IJARIIT.com

