Design and development of web portal for IT service management

Mukunda Vijay Dahake
mukeshdahake007@gmail.com
Padm Dr. VB Kolte College of Engineering and Polytechnic, Malkapur, Buldana, Maharashtra

Mahesh Arun Pandit
maheshpan36@gmail.com
Padm Dr. VB Kolte College of Engineering and Polytechnic, Malkapur, Buldana, Maharashtra

Minal Nago Rane
minalrane123@gmail.com
Padm Dr. VB Kolte College of Engineering and Polytechnic, Malkapur, Buldana, Maharashtra

Komal Sanjay Sharma
komal2591994@gmail.com
Padm Dr. VB Kolte College of Engineering and Polytechnic, Malkapur, Buldana, Maharashtra

ABSTRACT

Through analyzing the IT service management framework and associated processes of Organization, this paper establishes various indicators of IT service management process. The weights of each measure are calculated with a logical Hierarchy Process (AHP), and the evaluation was executed in the Organization. And the suggestions are proposed with the meditation of both the evaluation results and the real position of Organization’s IT service management. The case is extremely considered in the views of IT service management objectives and misunderstandings, customer fulfillment model of IT service management, knowledge supporting formation of IT service management. It is terminate that if the organization wishes to successfully contraption IT service management’s customer satisfaciton model, it should eliminate the misunderstandings of IT service objectives first, while the advocacy of knowledge supporting structure of IT service management can play a number of effects.

Keywords— Management, Process, Application, Development, Documents, Web

1. INTRODUCTION

The World Wide Web was introduced in the early 1990s with the aim of making it possible to access information from any source in a consistent and simple way. Developed at CERN, in Geneva, Switzerland, it was aimed at physicists and other scientists that generate huge amounts of data and documents and need to share them with other scientists. Hypertext was acquired as a simple way to both give eruption to documents and to link them together. The HTTP protocol was designed to permit one computer—the client computer—to request data and documents from another computer—the server computer—so that it could make that document available to the users on the client computer. In this way, the World Wide Web was viewed as a vast repository of information that provided access to a large number of users. This view of the Web was quite stable and it has changed greatly over time.

A first key inspection was that the address that was considered to be a page of data on the server put up, in fact, refer to a program that could be executed on the server and its results returned to the client. Today, the address could actually refer to an experience (Web) application being invoked. Currently, the Web is a powerful platform offering star ray of tools and components to application developers.

A new generation of applications offers user’s opportunities to communicate, collaborate, and even update the capabilities of the application. Applications support individuals, small businesses or communities of users as well as large company businesses. In a survey that captured the state of the art in Web application development in 1999, Fraternal described a Web application as a hybrid between hypermedia and an information system. As a consequence, he stated the following requirements for Web applications.

1.1 Foundations of the Web
despite the expensive developments over the last 10 years, the fundamental principles upon which the World Wide Web was based have remained constant. Structurally, the World Wide Web is based on client-server computing, in which servers store documents
and clients access documents. The same computer is permitted to function as a client and as a server at different times. The World Wide Web introduced three elemental concepts on top of client-server computing: a method of naming and mentioning to documents (URL), a language for writing documents that can carry data and relationship to other documents (HTML), and a protocol for client and server machines to communicate with each other (HTTP).

1.2 URL
A naming system is a fundamental component of computer systems, especially so for distributed systems. A naming system prescribes the way objects are named so that the object can be defined and located. Depending on the characteristics of the naming system, objects may be searched for on the basis of their exact names only or on the basis of their attributes. For example, one might want to tell the system to “fetch the paper written by Alan Turing about intelligence test.” The World Wide Web’s naming scheme had the goal of outstanding identifying all gadget stored on the computers on the Internet. The naming scheme is based on Uniform Resource Locators (URLs) which are composite names identifying the computer (IP address), the document in the file system of that computer, and a protocol with which to interface with that thing.

1.3 HTML
The documents continuously the Web are written in the HyperText Markup Language. HTML documents contain content to be displayed, formatting instructions that tell the browser how to display the contents of the document, and links to other documents. HTML has progressed along with browsers to reach better visual presentations and standardization. Initially, HTML was view erase language for instructing browsers what to display for humans. But as the number of documents written in HTML has grown, and as many applications started to generate HTML documents, computer processing of HTML documents became important. The extended markup language XML as created to standardize the definition of other specialized markup languages. XHTML is an XML objection HTML which has become the ruling variant of HTML. Currently, the Web Hypertext Application Technology Working Group (www.whatwg.org) is working on defining an evolutionary path for HTML and reconciling the discrepancies between XHTML and HTML. Other groups such as W3C are working on XHTML as a standard.

2. LITERATURE REVIEW

Literature Review of Web Quality Factors Several proceed go near towards website evaluation boast been enumerated in last decade, for instance, Ivory et al. (2000), Aladwani and Palvia (2002), Olsina and Rossi (2002), Moraga et al. (2004), Calero et al. (2005), Seffah et al. (2006), Abramowicz et al. (2008) and Olsina et al. (2009), etc. Ivory et al. (2000) present a methodology for evaluating information-centric websites. Five stages have ensured suggest in the methodology: a) Identifying an exhaustive set of quantitative interface measures such as the amount of text on a page, colour usage, consistency, etc. b) Computing count for a large sample of access interfaces c) Deriving statistical models from the count and ratings d) Using the models to predict ratings for new interfaces e) Validating model prediction. Aladwani and Palvia (2002) proposed a 25-item instrument that represents key characteristics of website quality from the users’ outlook.

The instrument was designed to count four aspects of web quality: particular content, content quality, arrival and technical adequacy. Olsina and Rossi (2002) proposed the web quality evaluation method (WebQEM) to define an evaluation process in four technical phases: a) Quality requirements definition and specification [specifying characteristics and assigns based on the ISO/IEC 9126-1 (2001) such as conformable, functionality, reliability, and effectiveness and taking into account web audience’s needs] b) Elementary evaluation (applying metrics to quantify attributes) c) Universal evaluation (selecting category criteria and a scoring model) d) Conclusion (giving guidance). Regardless, evaluations extract place mainly when the application is completed. Kahn et al. (2002) advance a model as the Product and Service Presentation model for Information Quality (PSP/IQ). In this model, a quadrant was established wherein column headings represented two vision of quality, viz. ‘conforming to specifications’, and ‘meeting or exceeding consumer expectations’ while rows headings represented ‘product quality’ and ‘service quality’.

The crucial dimensions of IQ for distributed high-quality information were identified as accessibility, a specific amount of information, believability, completeness, concise representation, consistent 12 representation, ease of manipulation, free of error, explainable, objectivity, suitability, reputation, security, timeliness, understandability and value added. These enlarge happen mapped into the PSP/IQ quadrants conforming to whether they can be achieved by conformance to specifications or by considering the changing expectations of consumers performing organizational tasks. An examination was prepared and data collected continuously survey and mean value was calculated for all four quadrants of the model. This model considered only sixteen dimensions and their impact on performance related to information quality, the interdependencies not being taken into account.

3. ADMIN MODULE

Which is having access to all the system, but especially he has the main work of accepting or managing to the client to provide the Service such as View client requirement, updating client requirement to the employee updating project completion details, Report Generation into the system, in addition to it. He has to maintain and manage the client, employee, only one having authority to View the client requirement update client report to the employee update Project completion details to the client, Report generation.

3.1 User module

Which is having user level access to the system, but especially he is able to Enquiry of the services, Register for services, Update requirements, View Project completion details, Pay for services.
3.2 Existing system
- In existing, the client needs to meet for service on call or face to face.
- The client needs to meet in the company for its requirements.
- Pay for service is only cash or cheque mode.
- The employee needs to meet the client for its requirement to provide the service.
- The client needs to call or meet face to face for completion of service details.
- Admin needs to collect records for report generation.

3.3 Proposed system
- IT Services Management System is the automated system which helps in maintaining the data on the machine. It also helps to keep track of updating the requirement and project completion details.
- Each and every process becomes automated and that results in fewer efforts. It helps in reducing the human errors in report generation.

3.4 Inspection of System requirement
Inspection of system requirement means studying the besides system in order to gather the details concerning the way it resizes data, processes the data, produces the output. I used the following techniques for identifying system requirements:
- Reviewing organization documents
- Onsite inspection
- Conducting interviews

3.5 Onsite observations
- It is a process of acceptance and observing people, objects and their incident to obtaining the information. The major unbiased of the Onsite Observation is to acquire as close as possible to the real actual system being studied.
- Here, I notice the activities of the system directly. I saying the company environment and workload on the users.
- The physical arrangement of the current system along with the location & movement function of the staff was inspecting. In this way, the information about the present, objects and people convinced.

4. WORKFLOW DIAGRAM

![Workflow diagram](image)

Fig. 1: Workflow diagram

4.1 ER diagram

![ER diagram](image)

Fig. 2: E-R diagram
5. CONCLUSION
The area of Web application development from a software engineering point of view. The Web is a fetching playground for software engineers where you can quickly deliver an application to millions of users and receive instant feedback. Web application development requires quickness, the use of standard components, interoperability, and close awareness to user needs. Indeed, one of the important features of popular Web applications is to support user participation to add value to the application and collaborate with other users. Due to the wide reach of the Internet, Web applications reach users that are varied in age, culture, language, education, interest, needs, etc. Providing for interaction and cooperation among such varied users poses many interesting challenges. Recent Web applications have brought new importance to the role of (unstructured) data in applications. There are interesting questions regarding how to generate, explain, structure, disambiguate, validate, search, and otherwise manipulate vast amounts of data. The value of many applications increases as the volume of their data grows. With the help of scalable data-interoperability, applications and their users can collaborate. There are many efforts currently underway to address this problem.

6. REFERENCES