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ABSTRACT 
 

This paper presents a holistic, non-intrusive approach for 

drunk and drowsy detection of the driver using computer 

vision techniques of facial landmark detection and motion 

detection. The driver's continuous real-time video feed is 

observed with the help of a smartphone camera. A single 

scalar quantity, Eye Aspect Ratio (EAR) which characterizes 

persistent eye blinks continuously analyses this feed. 

Simultaneously the system checks the body and the head 

movements using the differential imaging technique, which 

operates in real-time. A severity score indicating the fitness to 

drive is generated cumulatively using both methods. The 

driver is notified with the sound of an alarm if the results are 

positive based on a threshold value of the severity score.  

 

Keywords— Computer vision, Real-time processing, Motion 

detection, Facial landmark detection, Eye Aspect Ratio, 

Severity score 

1. INTRODUCTION 
Drunk and drowsy driving are the leading causes of road 

accidents across the world. Klauer et al. [1] have found that 

drowsiness increases the risk of an accident up to six times, 

which is further compounded due to nighttime conditions or in 

situations without prior sufficient sleep [2]. It is a well-known 

fact that the influence of alcohol is one of the major causes of 

reduced vehicular control and increased risk of accidents. 

Numerous studies have established that the risks of road 

accidents, injury or death increase exponentially under the 

influence of alcohol [3]. In Europe itself, there is an estimation 

of 10,000 deaths each year because of drunk driving [4]. 

Alcohol-impaired driving accidents contribute to approximately 

31% of all traffic casualties in the USA [5]. In China, Li et al. 

found that about 34.1% of all road accidents were alcohol-

related [6]. All of these studies indicate serious human lapses 

and avoidable causes of death, which can be prevented by 

proper monitoring and alerting technology. Therefore, it is 

essential to develop a holistic, non-intrusive system to 

continuously monitor a person’s physical and facial movements 

and to alert them at critical moments to avoid road [17] and 

[18]; techniques using a stereo camera [18] and [19]. Some of 

these techniques have also been converted into commercial 

products such as Smart Eye [18], Seeing Machines DSS [19], 

Smart Eye Pro [18] and Seeing Machines Face API [19]. 

However, these commercial products are still limited to 

controlled environments and require laborious calibration 

techniques. Thus, there is a long way to go before a reliable and 

robust commercial product is built in this category. 

 

The existing systems based on real-time driver monitoring, 

using image processing techniques are largely tackling one 

aspect of the problem, i.e. either drowsiness or drunkenness. To 

accidents, thereby significantly preventing serious injury and 

loss of lives. 

 

2. RELATED WORK 
Existing methods use both active and passive techniques to 

develop real-time monitoring systems. Active methods use 

special hardware such as illuminators [7], infrared cameras, 

wearable glasses with special close-up cameras observing the 

eyes [8], electrodes attached to the driver's body to monitor 

biomedical signals, like cerebral, muscular and cardiovascular 

activity [9] [10]. These methods provide reliable and accurate 

detection. However, the cost of such specialized equipment is a 

major drawback hindering their popularity. These equipment 

are also intrusive that is, it causes annoyance to the driver's 

body and hinders regular driving. The unusual effect of driving 

in the presence of invasive instrumentation reduces the 

drowsiness in testing and simulation conditions. Consequently, 

the efficacy of such models is limited in real road conditions. 

Most of them are yet to be effectively introduced in the market. 

 

Passive techniques in monitoring systems majorly rely on the 

standard remote camera. A set of these passive methods are 
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based on the driver’s performance, by evaluating variations in 

the lateral position of the vehicle, velocity and steering wheel 

angle [11] [12]. The process of signal acquisition is easy and 

meaningful in these approaches, which has led to the 

penetration of these techniques into the market. However, these 

systems are subjected to several constraints such as vehicle 

type, driver’s experience and condition of the road. These 

systems also require a considerable amount of time to analyze 

driver behaviours and therefore, are not suitable for critical 

alert systems. 

 

Another category of passive methods is based on real-time 

visual analysis of the driver, using image processing 

techniques. Computer vision can be a natural, non-intrusive and 

intuitive solution for monitoring drowsiness and loss of vehicle 

control due to stupor under the influence of alcohol. These 

approaches are both cost-effective and efficient, as the 

indications of drowsiness and drunkenness can be easily 

detected through facial and head/body movements. Several 

analysis algorithms and cameras have been documented in the 

literature for this approach: techniques using visible spectrum 

camera [13] and [14]; methods using an IR camera [15], [16], 

the best of the authors' knowledge, there are no software 

solutions using image processing techniques, for tackling both 

these problems as a whole and providing a complete analysis of 

whether the driver is fit to drive or not. The present approach 

requires no sophisticated or costly hardware equipment or 

difficult calibration processes and is simple, user-friendly and 

cost-effective. The solution is completely non-intrusive and 

does not hinder or influence the driving process in any manner. 

The techniques of facial landmark detection and motion 

detection using differential images are computed in real- time 

with negligible computational costs, ensuring quick response 

and alert at critical moments to avoid unfortunate accidents. 

This paper presents a two-pronged approach for holistic driving 

fitness detection, checking for both drowsiness and the 

potential influence of alcohol, using computer vision 

techniques of facial landmark detection and motion detection, 

using a simple smartphone camera installed in the vehicle, 

which leads to significantly enhanced probabilities of 

avoidance of road accidents, injury and death. 
 

3. PROPOSED WORK  
The proposed work targets both the detection of drowsiness and 

reduced vehicular control due to stupor induced by the 

influence of alcohol and even sleep deprivation, simultaneously 

and provides a solution which detects and reports such 

conditions in real-time. 
 

The main system flow diagram is shown in Fig. 1. The input to 

the system is a video feed captured by a simple smartphone 

camera attached in a position to get a continuous video feed of 

the head and upper body of the driver. This feed is processed 

frame by frame, by the system. Drowsiness is detected by the 

blink patterns of the eyes, using facial landmark detectors [20], 

which provide a precise method for estimation of eye-opening 

using a single scalar metric called Eye Aspect Ratio (EAR). 

Simultaneously, an analysis to detect head and body 

movements of the driver is performed, to ascertain whether 

he/she is potentially under the influence of alcohol or sleepy or 

both.  The relative lateral movement determines the head tilt 

angle. When the head angle goes beyond a certain threshold, 

the unusual behaviour of the driver is recorded. The results of 

both of these analyses are combined to yield a cumulative 

severity score. Based on this score, the system sounds an alarm, 

implemented via a voice notification output, to alert the driver 

and for moderate to high severity conditions, the location of the 

smartphone is sent to the respective kin and concerned 

authority. Location of the smartphone is sent to the respective 

kin and concerned authority. 

 
Fig. 1: Driving fitness detection- system flow diagram 

 

3.1 Real-time eye blink detection 

Observation of the eyes and measurement of eye closure is an 

accurate measure of drowsiness detection. If the distance 

between the eyelids is tending to zero, then a blink is detected. 

If this value persists beyond a certain period of time, known as 

the blink threshold, then it can be said that the driver is drowsy.  

 

The process of finding the location of different facial features 

such as the eyes, eyebrows, mouth etc. accurately, using shape 

prediction methods, is called facial landmark detection. We 

propose to identify the facial landmarks to locate the eyes and 

eyelid contours. We use the Dlib [23] 68 point land marking 

model, because of its ability to detect facial landmarks in real-

time, with high-quality predictions and greater accuracy over 

the 5 point land marking model, all of which are critical factors 

for our application. This pre-trained facial landmark detector, 

as a part of the Dlib library, has 68 (x, y) coordinates which 

map to the facial structures or landmarks of the face. Out of 

these landmarks, the left and right eyes are of interest to us, 

both of which are characterized by 6 (x, y) coordinates. These 

are shown in figure 2. The coordinates are numbered starting 

from the left corner of the eyes and working clockwise around 

it.  

 

From these landmarks detected, a scalar quantity called the Eye 

Aspect Ratio (EAR) is calculated to estimate the openness of 

the eye. This ratio is calculated as an average for both the eyes 

and monitored over a series of 48 frames so that the presence of 

a persistent blink is detected and an accurate result is obtained.  

 

 
Fig. 2: Eye landmarking in an open and closed eye 
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The EAR is calculated as the Euclidean distance between the 

height and width of the eye as  

 

EAR = (|p2-p6|+|p3-p5|)/(2*|p1-p4|) 
 

Where p1, p2, … , p6 are the coordinates in the 2D landmark 

locations, shown in figure 2.  
 

For the open eye, the EAR is almost a constant value, whereas 

it rapidly tends to zero for a closed eye. When the value of 

EAR drops below a threshold called the Eye Aspect Ratio 

(EAR) threshold, a blinking state of the eye is detected. In order 

to obtain an accurate and organic value for the EAR threshold 

suitable for our application, we chose a random sample set of 

subjects and computed the EAR under the variation of a 

multitude of attributes: lighting conditions including dim and 

bright lighting and flickering between both; height of the 

subject and the relative elevation from the camera; the eye 

shape and size of the subject; the presence and absence of 

spectacles. After computing these values, we have found the 

optimum value of the blink threshold for accurate detection of 

drowsiness, to be 0.3. 

 
Fig. 3: Eye blink detection state machine diagram 

 

Sounding an alert at this stage would be erroneous and would 

lead to multiple false alarms. Our system monitors the EAR for 

a consecutive period of 48 frames, to check if the value drops 

further and does not increase, indicating a state of persistent 

blinks.  

 

In case of a positive result, the algorithm returns a Boolean 

flag, called the drowsiness flag (D), marking drowsiness 

detection as true. This flag is further used in severity score 

calculation and yielding alert results. The state machine 

diagram of real-time blink eye detection is shown in Fig. 3. The 

advantage of using the scalar EAR value for drowsiness 

detection ensures real-time detection of drowsiness since the 

computation cost of the EAR metric from facial landmarks is 

almost negligible. Thus, critical moments of drowsiness can be 

detected and reported with almost negligible response time.  
 

3.2 Motion detection using differential images technique  
While driving, the driver should be in a state of complete 

alertness and concentrate fully on the road. But in a state of 

drowsiness or under the influence of alcohol, the driver loses 

their consciousness and finds it difficult to maintain a steady 

position of their hands and body. Our system monitors these 

motions of the driver using the differential images technique of 

motion detection. Our current approach focuses on relative 

lateral movements of the head and upper body, as the relative 

transverse movements are difficult to detect through the 

successive series of frames. If lateral movements relative to the 

driver’s usual mean position are present in a series of 

consecutive frames and exceed a specified angular threshold, 

then it can be concluded that the driver is losing control of the 

vehicle, potentially under the influence of alcohol or 

drowsiness or both.  

 

The proposed algorithm converts the video stream into an 

image array, in order to facilitate a comparison in the difference 

in positions, which enables the system to detect motion. The 

images are then resized to a uniform size and converted into 

grayscale.  

 

Subtraction of two images pixel by pixel yields a differential 

image, which enables the system to clearly identify any relative 

movement which may have taken place in the consecutive 

frames. The calculation of a differential image is done as 

follows:  

gdiff(x, y) = g1(x, y) – g2(x, y) 

 

Where, g(x, y) is the image function for the (x, y) coordinates 

for each pixel in the image.  

 

Our approach considers three consecutive image frames at any 

particular instance, the current image frame, the previous image 

frame and the next image frame.  

 

These can be labelled as: 

It-1: Image at time t - 1, i.e. the previous image frame  

It: Image at time t, i.e. the current image frame  

It+1: Image at time t + 1, the next image frame  

 

Two differential images, ΔI1 and ΔI2 are calculated. ΔI1 

denotes the differential image between the current and next 

image frame, whereas ΔI2 denotes the differential image 

between the current and previous image frame. The final 

differential image ΔI is a bitwise AND operation between the 

two differential images. Performing a bitwise AND operation 

on two images is a commonly used technique to extract a 

particular part of the image. In the present case, the head and 

body of the driver are extracted separately from the static 

background. The differential images are grayscale images, with 

a single colour channel. Bitwise AND operations are performed 

on these colour channel values for each pixel of the two 

differential images under consideration. This is an inbuilt 

function available in the OpenCV [21] library, which has been 

used to implement this algorithm. The approach can be 

summarized as below: 
 

ΔI1 = It+1 –It 

ΔI2 = It – It-1 

ΔI = ΔI1 Λ ΔI2 
 

Considering differential images between three consecutive 

frames removes the unnecessary background of the images 

under consideration, and yields accurate results with regard to 

relative motion between the frames. During our laboratory 

investigation of this method, it has been found to be efficient in 

removal of both static and dynamic backgrounds, since the 

differential images are a representation of the gradual changes 

between the frames and only the relative motion of the driver is 

being taken into consideration. This technique also works well 

for both dimly and brightly lit conditions. However, the effects 

of a sudden drastic change in lighting remain to be investigated.  

 

The experimental results of motion detection by differential 

images technique is shown in figure 4. These images are set in 

laboratory conditions with moderately bright lighting. The 

frames shown are sampled at an interval of fifteen frames, in 

order to clearly demonstrate the lateral head and body 

movement of the driver. However, the system calculates 

(1) 

(2) 

(3) 

(4) 

(5) 
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differential images from three consecutive frames. In each set 

of results, the images correspond to the previous frame It-1, the 

current frame it, the next frame It+1 and the final differential 

image ΔI. The corresponding value of ΔI is printed on the next 

line. 
 

It can be clearly seen that the static background is successfully 

eliminated using this technique and only the relative motion 

between the frames is captured in the final differential image. 

The numeric value of ΔI is seen to increase significantly with 

an increase in lateral displacement of the head and body.  
 

When the value of ΔI exceeds a specific threshold, known as 

the Differential Angular Threshold, and persists for several 

consecutive frames, the algorithm detects a loss of control of 

bodily movements due to drowsiness or drunkenness or both. 

The random sample set of subjects used to compute the 

optimum value of the blink threshold were also involved in the 

experiments done to compute the optimum value of the 

Differential Angular Threshold. 

 
Fig. 4: Motion detection using differential images technique 
 

In this set of experiments, the attributes which were varied are 

the height and build of the subject, lighting conditions and 

deliberate movements. The result of these experiments found 

that the optimum Differential Angular Threshold for the 

accurate detection for lateral relative motion is 2.5. Any value 

of ΔI more than this is flagged true for detection of motion. The 

corresponding Boolean flag, called the motion flag (M), is 

marked true and the final differential image value is returned 

for severity score calculation.  

 

The usage of differential images technique for the present 

approach ensures its efficacy across all individual driving 

styles, by checking the relative lateral movement from the 

driver’s usual mean position and monitoring this relative 

angular displacement for persistence over several consecutive 

frames. This ensures accurate results of lateral motion detection 

irrespective of individual styles and driving conditions. 

 

 This technique also requires almost negligible computation 

time and assures real-time detection of critical moments of 

potential loss of vehicle control and real-time reporting and 

alert of the same. 

 

3.3 Alert sound and location notification  

This part of the system analyzes the results of the drowsiness 

detection and motion detection stages and forms a cumulative 

severity score, which denotes the severity of the situation. This 

is used to ascertain the appropriate alert notification to be sent 

out.  

 

Our system uses two flags, the drowsiness flag and the motion 

flag, to record the results of the drowsiness and motion 

detection analyses respectively. The conditions under which the 

alert needs to be sent by the system, are determined by an alert 

matrix, as shown in table 1. 

 

The alert results are based on the values of the drowsiness and 

motion flags. If either of the flags is true, then an alert is 

yielded by the system.  

 

Table 1: Alert matrix 

Drowsiness Flag (D) Motion Flag (M) Alert Result 

True True True 

True False True 

False True True 

False False False 

 

An alert comprises of two types of notifications, namely a voice 

notification or alarm, which alerts the driver and helps him/her 

regain their consciousness, and a geographical location 

notification, which is sent to the respective kin or emergency 

contact of the driver and/or concerned authorities, with a 

description of the smartphone, and consequently the driver's 

location, and their current critical condition.  

 

The choice between these two types of alerts is made with the 

help of the severity score, calculated with the help of the 

following equation.  
 

Severity Score (S) = α * ΔD + β * ΔM 

  

Where, α: Weight of drowsiness factor, ΔD: Drowsiness factor 

β: Weight of motion factor ΔM: Motion factor. 

 

The drowsiness factor ΔD is a numeric measure of the 

persistent blinks detected by the system. It is computed as the 

absolute difference between the value of the EAR metric at the 

time of persistent blink detection and the constant blink 

detection, that is:  
 

ΔD = | EAR – Blink Threshold | 

 

Similarly, the motion factor ΔM is a numeric measure of the 

deviation from the Differential Angular Threshold. It is the 

absolute difference between the value of ΔI and the Differential 

Angular Threshold, that is:  
 

ΔM = | ΔI – Differential Angular Threshold | 

 

Thus, the severity score S is a weighted sum of these two 

factors. The weights assigned to these factors are a numeric 

indicator of their priorities. Since the detection of persistent eye 

blinks is essential for the detection of both drowsiness and the 

potential influence of alcohol, thus the weight (α) assigned to 

ΔD is greater than the weight (β) assigned to ΔM. We have 

found that the values of α = 2 and β = 1 work satisfactorily in 

the calculation of severity score and determining the alert 

result.  

 

Table 2 shows the relationship between the range of severity 

scores and the corresponding alert yielded by the system 

 

Table 2: Relationship between severity score range and 

alert yielded 

Severity score 

range 

Possible critical 

conditions 
Alert yielded 

Low Mild Drowsiness Voice alarm 

Moderate 

Drowsiness, the 

mild influence of 

alcohol 

Voice alarm, geo 

location notification 

to emergency contact 

(6) 

(7) 

(8) 
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Moderate 

Persistent 

Moderate to severe 

drowsiness, 

moderate to the 

severe influence 

of alcohol or both 

Persistent voice 

alarm, geo-location 

notification to 

emergency contact 

 

Severe 

Severe drowsiness 

and/or 

drunkenness or 

both 

 

Persistent voice 

alarm, geo-location 

notification to emer-

gency contact and 

concerned authorities 
 

The geographical location of the smartphone is captured with 

the help of its IP address. The voice alert is sounded 

continuously until the driver returns back to a state of normalcy 

and regains control over the vehicle or manually turns it off. 
 

The system responds to critical situations of drowsiness and 

potential loss of vehicle control under the influence of alcohol 

or drowsiness or both, in real-time, due to negligible 

computational times of both the real-time blink detection and 

motion detection modules. The alerts are also sounded almost 

instantly, ensuring accurate and timely alerts to prevent any 

unfortunate accidents. 

 

4. IMPLEMENTATION DETAILS 
The proposed system is implemented in Python 3.5 with the 

help of OpenCV[24] libraries, using the observer design 

pattern[25]. This software design pattern is used to solve 

problems where a one-to-many dependency is defined between 

objects, such that when one object changes state an open-ended 

number of objects dependent upon it can be notified 

immediately. This solution is proposed by defining a subject or 

an observable class, with which any number of observers can 

register. The registered dependent observers are notified and 

updated automatically when there is a change of the observable 

class. 

 

The flow diagram for the system implementation is shown in 

figure 5. 

 

The video stream generated by the smartphone camera is 

constantly monitored by an observable class called Stream 

Capture. The classes which implement drowsiness detection 

and motion detection are the dependent classes on this stream 

and register as observers with the Stream Capture class. When 

the video camera is successfully detected and the stream read, 

the registered observers are notified. 

 

Similar to the Stream Capture class, a Notifier class manages 

the notification module in case of any drowsiness or motion 

detection. This is designed as an observable class with the 

classes implementing the alarm action and the geo-location 

notification action being the registered observers. Whenever the 

detection algorithms send any request for notifying the driver, 

along with the corresponding parameters, the Notifier class 

updates the observers and sends them a list of classes which 

have requested to send a notification and their corresponding 

parameters. The alarm action and/or geo-location action are 

executed according to the severity score computed by the 

Notifier and the control returns back to Stream Capture and the 

process continues. 

 

The final product made available to the user is in the form of a 

smartphone application, to be installed on the driver’s phone 

and utilizing resources like the smartphone camera, speakers 

and the phone’s Internet connection. This ensures an easy-to-

use and widely accessible application. 

5. CONCLUSION AND FUTURE WORK 
In this paper, we have described a holistic, non-intrusive 

approach to driving fitness detection, by checking for 

drowsiness and the loss of vehicle control under the potential 

influence of alcohol, based on driver visual monitoring, using 

computer vision techniques of facial landmark detection and 

motion detection using differential images. 
 

We have also demonstrated that real-time frame based facial 

landmarks and body motion detectors are precise indicators for 

estimation of drowsiness and potential drunkenness. These are 

powerful measures, even for low image resolution and in-the-

wild circumstances such as bad illumination, facial expressions, 

non-frontality etc. The computational cost for the Eye Aspect 

Ratio of the eye blink and detection of lateral relative motion is 

found to be negligible, which allows the system to send out 

alerts in critical situations with rapid response times. 
 

However, the following limitations exist and can be further 

improved through future discussion and further work. 

 We see a limitation in the assumption of a constant blink 

duration. However, this duration differs from person to 

person. An adaptive approach can yield better results. 

 Nighttime and poor lighting conditions can also potentially 

impact the performance of real-time blink detection and 

motion detection algorithms. The usage of approaches 

which are sensitive and responsive to such conditions can 

further enhance the system performance. 

 Another limitation to this solution is that EAR is estimated 

for 2D frames which is insensitive to the angle of head 

orientation. This solution could be further enhanced by 

defining a 3D EAR, using landmark detectors which 

estimate a 3D model of the eye landmarks in an image. 

 The sending of a geo-location notification to the emergency 

contact of the driver, their kin or the concerned authorities 

introduce a requirement of an Internet connection for the 

system. Apart from this module, the system can function 

perfectly offline. The introduction of this dependency could 

be a subject for future discussion, as there could be possible 

limitations to the proper functioning of this feature in 

regions of poor connectivity. However, the alarm feature 

will work even in such situations. 
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