On g^+-semi-open fuzzy sets and fuzzy g^+-semi-irresolute maps in fuzzy topological spaces

P. Gomathi
jp_gomathi1995@gmail.com
Vivekananda College of Arts and Sciences for Women, Elayampalayam, Tamil Nadu

M. Sentamilselvi
sentamilselvi85@gmail.com
Vivekananda College of Arts and Sciences for Women, Elayampalayam, Tamil Nadu

ABSTRACT

In this paper, the class of g^+-closed fuzzy sets are introduced. This class properly placed between the class of semi-closed fuzzy sets and the class of gs-closed fuzzy sets in fuzzy topological space. Further, the concept of fuzzy g^+-continuous, fuzzy g^+-irresolute mapping, fuzzy g^+-closed maps, fuzzy g^+-open maps and fuzzy g^+-homeomorphisms in fuzzy topological spaces are also introduced, studied and some of their properties are obtained.

Keywords— g^+-closed fuzzy sets, fg^+-continuous, fg^+-irresolute, fg^+-open, fg^+-closed mappings and fg^+-homeomorphism.

1. INTRODUCTION

The concept of fuzzy sets and fuzzy set operations were first introduced by L. A. Zadeh in his classical paper [19] in the year 1965. Subsequently, several researchers have worked on topology using fuzzy sets and developed the theory of fuzzy topological spaces.

The notion of fuzzy subsets naturally plays a very significant role in the study of fuzzy topology introduced by C. L. Chang [5].

In the year 2002, g^+-closed sets, g^+-continuous, g^+-irresolute, g^+-closed, g^+-open maps were introduced and studied by M. K.R.S. Veera Kumar [18] for general topology.

In this paper, we considered a new concept related to semi-closed fuzzy sets and generalized semi-closed fuzzy sets, namely the class of g^+-semi-closed (briefly fg^+-closed) fuzzy sets. The class of g^+-closed fuzzy sets properly contains the class of semi-closed fuzzy sets and gs-closed fuzzy sets.

In this paper, we will study and characterize g^+-closed fuzzy sets and associated functions, by introducing and characterizing fg^+-continuous, fg^+-irresolute mappings and fg^+-homeomorphisms.

2. PRELIMINARIES

Let X, Y and Z be sets. Throughout the present paper $(X, T), (Y, \sigma)$ and (Z, η) and (or simply X, Y and Z) mean fuzzy topological spaces on which no separation axioms is assumed unless explicitly stated. Let A be a fuzzy set of X. We denote the closure, interior and complement of A by $cl(A)$, $int(A)$ and $C(A)$ respectively.

Before entering into our work we recall the following definitions, which are due to various authors.

2.1 Definition

A fuzzy set A in a fits (X, T) is called:

1. A semi-open fuzzy set, if $A \subseteq int(cl(A))$

2. A pre-open fuzzy set, if $A \subseteq cl(int(A))$

3. A α-open fuzzy set, if $A \subseteq cl(int(cl(A)))$

4. A semipro-open fuzzy set, if $A \subseteq int(cl(int(A)))$ can be found in [4] and [7].
The semi-closure (resp. pre-closure, α-closure fuzzy and semipro closure fuzzy) of a fuzzy set A in a fts (X, T) is the intersection of all semi-closed (resp. pre-closed fuzzy sets, α-closed fuzzy sets and sp-closed fuzzy sets) fuzzy sets containing A and is denoted by $scl(A)$ (resp. $pcl(A)$, $acl(A)$ and $spcl(A)$).

The following definitions are useful in the sequel.

2.2 Definition

A fuzzy set A of fts (X, T) is called:

1. A generalized closed $(g$-closed fuzzy) fuzzy set, if $int(A) \subseteq U$
2. A generalized-pre closed $(gp$-closed fuzzy) fuzzy set, if $pint(A) \subseteq U$.
3. An α-generalized closed $(ag$-closed fuzzy) fuzzy set, if $aint(A) \subseteq U$.
4. A generalized α-closed $(ga$-closed fuzzy) fuzzy set, if $aint(A) \subseteq U$.
5. A generalized semi-pre closed $(gsp$-closed fuzzy) fuzzy set, if $spint(A) \subseteq U$.
6. A generalized semi-closed $(gs$-closed fuzzy) fuzzy set, if $sint(A) \subseteq U$.
7. A semi-generalized closed $(sg$-closed fuzzy) fuzzy set, if $sint(A)U$.
8. A γ-closed fuzzy set and
9. A ψ-closed fuzzy sets can be found in [7].

2.3 Definition

Let X, Y be two fuzzy topological spaces. A function $f: X \rightarrow Y$ is called:

1. Fuzzy continuous (f-continuous).
2. Fuzzy ω-continuous ($f\omega$-continuous).
3. Fuzzy semi-continuous ($f\omega$-continuous function).
4. Fuzzy pre-continuous ($f\omega$-continuous function).
5. fg-continuous function.
6. fgp-continuous function.
7. fgs-continuous function.
8. fgs-continuous function.
9. $fg\alpha$-continuous function.
10. $fg\alpha$-continuous function.
11. $fgsp$-continuous functions.
12. $fgsp$-continuous function.
13. $fgsp$-continuous function.
14. $fg\psi$-continuous and
15. $fg\psi$- irresolute and
16. $fg\psi$- irresolute can be found in [7].

2.4 Definition

Let X, Y be two fuzzy topological spaces. A function $f: X \rightarrow Y$ is called:

1. Fuzzy $T^{1/2}$-space, fuzzy $T#$ space and fuzzy $#T$ space can be found in [7].

2.5 Definition

Let X, Y be two fuzzy topological spaces. A function $f: X \rightarrow Y$ is called:

1. Fuzzy –homeomorphisms,
2. Fuzzy $g\alpha$-homeomorphisms,
3. Fuzzy $g\#$-homeomorphisms,
4. Fuzzy $g\#\alpha$-homeomorphisms and
5. Fuzzy $g\#\alpha$-homeomorphisms can be found in [7].

3. $g\#$-SEMI CLOSED FUZZY SETS IN FTs

3.1 Definition

A fuzzy set A of a fuzzy topological spaces (X, T) is called $g\#$ semi-closed fuzzy (briefly $g\#s$-closed fuzzy) set if $scl(A) \subseteq U$ whenever $A \subseteq U$ and U is $ag\#$-open fuzzy set in (X, T).

3.2 Theorem

Every closed (resp:semi- closed fuzzy set and α-closed fuzzy set) fuzzy set is $g\#s$-closed fuzzy set in any fts X.

Proof: Follows from the definition.

The converse of the above theorem need not be true as seen from the following example.

3.3 Example

Let $X = \{a, b, c\}$ and the fuzzy sets A and B be defined as follows: $A = \{(a, 0.3), (b, 0.5), (c, 0.6)\}$, $B = \{(a, 1), (b, 0.8), (c, 0.7)\}$. Consider the fts$(X, T)$, where $T = \{0, 1, A\}$. Note that the fuzzy subset B is $g\#s$-closed fuzzy set but not a closed (not a semi-closed fuzzy set and not a α-closed fuzzy set) fuzzy set in (X, T).

3.4 Theorem

Every $g\#s$-closed fuzzy set is gs-closed (gsp- closed fuzzy set) fuzzy set in fts X.

© 2018, www.IJARIIT.com All Rights Reserved
3.5 Example
Let $X = \{a, b, c\}$ and the fuzzy sets A and B be defined as follows: $A = \{(a, 0.3), (b, 0.5), (c, 0.4)\}$, $B = \{(a, 0.5), (b, 0.3), (c, 0.4)\}$. Consider $T = \{0, 1\}$. Then (X, T) is fts. Here the fuzzy set B is gs-closed (resp. gsp-closed fuzzy set) fuzzy set but not g^s-closed fuzzy set in (X, T).

3.6 Theorem
In a fts X, if a fuzzy set A is both ag-open fuzzy set and g^s-closed fuzzy set, then A is semi-closed fuzzy set.

3.7 Theorem
If A is g^s-closed fuzzy set and $scl(A) \wedge \left(1 - scl(A)\right) = 0$. Then there is no non-zero ag-closed fuzzy set F such that $F \leq scl(A) \wedge \left(1 - A\right)$.

3.8 Theorem
If a fuzzy set A is g^s-closed fuzzy set in X such that $A \leq B \leq scl(A)$, then B is also a g^s-Closed fuzzy set in X.

3.9 Definition
A fuzzy set A of a fts (X, T) is called g^s-open fuzzy set (resp. g^s-open fuzzy set) if its complement $1 - A$ is g^s-closed fuzzy set.

3.10 Theorem
A fuzzy set A of a fts is g^s-open iff $F \leq \sin t(A)$, whenever F is ag-closed fuzzy set and $F \leq A$.

3.11 Theorem
Every open (resp. semi-open fuzzy set and α-open fuzzy set) fuzzy set is a g^s-open fuzzy set but not conversely.

Proof: Follows from the definitions
The converse of the above theorem need not be true as seen from the following example.

3.12 Example
In example 3.3, the fuzzy subset $1 - B = \{(a, 0), (b, 0.2), (c, 0.3)\}$ is g^s-open fuzzy set but not open (resp. not a semi open fuzzy set and not an α-open fuzzy set) fuzzy set in (X, T).

3.13 Theorem
In fts X, every g^s-open fuzzy set t is gs-open fuzzy (resp. gsp-open fuzzy set) but not conversely.

The converse of the above theorem need not be true as seen from the following example.

3.14 Example
In example 3.5, the fuzzy subset $1 - B = \{(a, 0.5), (b, 0.7), (c, 0.6)\}$ is gs-open fuzzy (resp. gsp-open fuzzy set) set but not g^s-open fuzzy set in (X, T).

3.15 Theorem
If $\sin t(A) \leq B \leq A$ and if A is g^s-open fuzzy set, then B is g^s-open fuzzy set in a fts (X, T).

3.16 Theorem
If $A \leq B \leq X$ where A is g^s-open fuzzy relative to B and B is g^s-open fuzzy relative to X, then A is g^s-open fuzzy relative to fts X.

3.17 Theorem
Finite intersection of g^s-open fuzzy set is a g^s-open fuzzy set.

3.18 Definition
fts (X, T) is called a fuzzy-Ts# space if every g^s-closed fuzzy set is a closed fuzzy set.

3.19 Definition
fts (X, T) is called a fuzzy-$#T$s space if every gs-closed fuzzy set is a g^s-closed fuzzy set.

4. FUZZY g^s-SEMI-CLOSURE AND FUZZY g^s-SEMI-INTERIOR FUZZY SETS IN FTs
In this section we introduce the concepts of fuzzy g^s-closure ($fg^s cl$) and fuzzy g^s-interior ($fg^s int$) and investigate their properties.

4.1 Definition
For any fuzzy set A in any fts is said to be fuzzy g^s-closure and is denoted by $fg^s cl(A)$, defined by $fg^s cl(A)=\wedge \{U: U$ is g^s-closed fuzzy set and $A \leq U\}$.
4.2 Definition
For any fuzzy set A in any fts is said to be fuzzy g^s -interior and is denoted by fg^s-int(A), defined by fg^s-int$(A) = \{ \vert : V \text{ is } g^s - \text{interior fuzzy set and } A \geq V \}$.

4.3 Theorem
Let A be any fuzzy set in fts (X, T). Then fg^s-cl$(A) = fg^s$-cl$(1 - A) = fg^s$-int$(1 - A) = 1 - fg^s$-cl(A).

4.4 Theorem
In a fts (X, T), a fuzzy set A is g^s -closed iff $A = fg^s$-cl(A).

4.5 Theorem
In fts X the following results hold for g^s -closure.
(1) fg^s-cl$(0) = 0$.
(2) fg^s-cl(A) is g^s -closed fuzzy set in X.
(3) fg^s-cl(A) is g^s -closed fuzzy set if $A \leq B$.
(4) fg^s-cl$(fg^s$-cl$(A)) = fg^s$-cl(A).
(5) fg^s-cl$(A \cup B) \geq fg^s$-cl$(A) \cup fg^s$-cl(B)
(6) fg^s-cl$(A \cap B) \leq fg^s$-cl$(A) \cap fg^s$-cl(B).

Proof: The easy verification is omitted.

4.6 Theorem
In a fts X, a fuzzy set A is g^s -open iff $A = fg^s$-int(A)

4.7 Theorem
In a fts X, the following results hold for g^s -interior.
(1) fg^s-int$(0) = 0$.
(2) fg^s-int(A) is g^s -open fuzzy set X.
(3) fg^s-int(A) is g^s -open fuzzy set if $A \leq B$.
(4) fg^s-int$(fg^s$-int$(A)) = fg^s$-int(A).
(5) fg^s-int$(A \cup B) \geq fg^s$-int$(A)fg^s$-int(B)
(6) fg^s-int$(A \cap B) \leq fg^s$-int$(A)fg^s$-int(B).

Proof: The routine proof is omitted.

5. FUZZY g^s -SEMI-CONTINUOUS AND FUZZY g^s -SEMI-IRRESOLUITE MAPPINGS IN FTS

5.1 Definition
A function $f: X \rightarrow Y$ is said to be fuzzy g^s -continuous $(fg^s$-continuous) if the inverse image of every open fuzzy set in Y is g^s -open fuzzy set in X.

5.2 Theorem
A function $f: X \rightarrow Y$ is g^s -continuous if the inverse image of every closed fuzzy set in Y is g^s -closed fuzzy set in X.

5.3 Theorem
Every fuzzy continuous (resp: $f\alpha$-continuous and $fsemi$ -continuous) function is fuzzy g^s -continuous.

Proof: The following proof is omitted.
The converse of the above theorem need not be true as seen from the following example.

5.4 Example
Let $X = Y = \{ a, b, c \}$ and the fuzzy sets A, B and C defined as follows. $A = \{(a, 0), (b, 0.2), (c, 0.3), B = \{(a, 0.3), (b, 0.5), (c, 0.6), C = \{(a, 1), (b, 0.8), (c, 0.7)\}$. Consider $T = \{0, 1, B\}$, and $\sigma = \{0, 1, A\}$. Then X, T and Y, σ are fts. Define $f: X \rightarrow Y$ by $f(a) = a, f(b) = b \text{ and } f(c) = c$. Then f is fg^s -continuous but not f -continuous (resp: not $f\alpha$ -continuous and not f semi-continuous). As the fuzzy set C is closed fuzzy set in Y and $f^{-1}(C)$ is not closed fuzzy set in X but g^s -closed (resp: α-closed fuzzy set and semi-closed fuzzy set) fuzzy set in X. Hence f is fuzzy g^s-continuous.

5.5 Theorem
Every fuzzy g^s -continuous function is fuzzy gs-continuous function and is fuzzy gsp-continuous function.

Proof: The following proof is omitted.
The converse of the above theorem need not be true as seen from the following example.

5.6 Example
Let $X = Y = \{ a, b, c \}$ and the fuzzy sets A, B and C defined as follows. $A = \{(a, 0.6), (b, 0.5), (c, 0.3), B = \{(a, 0.6), (b, 0.7), (c, 0.4), C = \{(a, 0.4), (b, 0.3), (c, 0.6)\}$. Consider $T = \{0, 1, A\}$, and $\sigma = \{0, 1, C\}$. Then X, T and Y, σ are
A function \(f: X \rightarrow Y \) is \(fg^s \)-continuous and \(X \) is fuzzy-Ts# space. Then \(f \) is \(f \)-continuous.

5.8 Theorem

If \(f: X \rightarrow Y \) is \(fg^s \)-continuous and \(X \) is fuzzy-Ts# fts, then \(f \) is \(fg^s \)-continuous.

5.9 Theorem

If \(f: X \rightarrow Y \) is \(fg^s \)-continuous and \(g: Y \rightarrow Z \) is \(f \)-continuous, then \(g \circ f: X \rightarrow Z \) is \(fg^s \)-continuous.

5.10 Definition

A function \(f: X \rightarrow Y \) is said to be fuzzy \(g^s \) semi-irresolute (\(fg^s \)-irresolute) if the inverse image of every \(g^s \)-closed fuzzy set in \(Y \) is \(g^s \)-closed fuzzy set in \(X \).

5.11 Theorem

A function \(f: X \rightarrow Y \) is \(fg^s \)-irresolute function iff the inverse image of every \(g^s \)-open fuzzy set in \(Y \) is \(g^s \)-open fuzzy set in \(X \).

5.12 Theorem

Every \(fg^s \)-irresolute function is \(fg^s \)-continuous.

Proof: Follows from the definitions.

The converse of the above theorem need not be true as seen from the following example.

5.13 Example

Let \(X = Y = \{a, b, c\} \) and the fuzzy sets \(A, B, C \) and \(D \) defined as follows. \(A = \{(a, 0.2), (b, 0.5), (c, 0.3)\}, B = \{(a, 0.8), (b, 0.5), (c, 0.7)\}, C = \{(a, 0.5), (b, 0.2), (c, 0.3)\}, D = \{(a, 0.5), (b, 0.8), (c, 0.7)\} \) Let \(T = \{0,1\}, \) and \(\sigma = \{0,1,A,B\} \).

Then \((X,T) \) and \((Y,\sigma) \) are fts. Define \(f: X \rightarrow Y \) by \(f(a) = b, f(b) = a \) and \(f(c) = c \) Then \(f \) is \(fg^s \)-continuous but not \(fg^s \)-irresolute as the fuzzy set is \(g^s \)-closed fuzzy set in \(Y \) but its inverse image \(f^{-1}(C) = A \) is not \(g^s \)-closed fuzzy set in \(X \).

5.14 Theorem

Let \(f: X \rightarrow Y, g: Y \rightarrow Z \) be two fuzzy functions. Then:

1. \(f \circ g: X \rightarrow Z \) is fuzzy \(g^s \)-continuous if \(f \) is fuzzy \(g^s \)-irresolute and \(g \) is fuzzy \(g^s \)-continuous.
2. \(f \circ g: X \rightarrow Z \) is fuzzy \(g^s \)-irresolute if both \(f \) and \(g \) are fuzzy \(g^s \)-irresolute.
3. \(f \circ g: X \rightarrow Z \) is fuzzy \(g^s \)-continuous if \(f \) is fuzzy \(g^s \)-continuous and \(g \) is fuzzy continuous.

Proof:

The following proof is omitted.

5.15 Theorem

If \(f: X \rightarrow Y, g: Y \rightarrow Z \) be two fuzzy functions. If \(f \) is \(fg^s \)-continuous and \(g \) is \(fg^s \)-irresolute and \(Y \) is fuzzy-Ts# space, then \(g \circ f: X \rightarrow Z \) is \(fg^s \)-irresolute function.

5.16 Theorem

Let \(f: X \rightarrow Y \) be a \(fgc \)-irresolute and a semi-closed fuzzy map. Then \(f(A) \) is a \(g^s \)-closed fuzzy set of \(Y \) for every \(g^s \)-closed fuzzy set \(A \) of \(X \).

5.17 Theorem

Let \(f: X \rightarrow Y \) be a \(fgc \)-irresolute and a semi-closed map. Then \(f(A) \) is a \(g^s \)-closed fuzzy set of \(Y \) for every \(g^s \)-closed fuzzy set \(A \) of \(X \).

6. FUZZY \(g^s \)-SEMI OPEN MAPS AND FUZZY \(g^s \)-SEMI-CLOSED MAPS IN FTs

Every open and fuzzy closed maps were introduced and studied by C. Wong [20]. This study was further carried out by Sadanand, N. Patil [10]. We introduced the following concepts.

6.1 Definition

A function \(f: X \rightarrow Y \) is said to be fuzzy \(g^s \)-semi open (briefly \(fg^s \)-open) if the image of every open fuzzy set in \(X \) is \(g^s \)-open fuzzy set in \(Y \).

6.2 Definition

A function \(f: X \rightarrow Y \) is said to be fuzzy \(g^s \)-semi closed (briefly \(fg^s \)-closed) if the image of every closed fuzzy set in \(X \) is \(g^s \)-closed fuzzy set in \(Y \).
Every fuzzy-open map is fuzzy g^s-open map.

Proof: The proof follows from the definition 6.1
The converse of the above theorem need not be true as seen from the following example.

Let $X = Y = [a, b, c]$. Fuzzy sets A, B and C be defined as follows. $A = \{(a, 0), (b, 0.2), (c, 0.3)\}$, $B = \{(a, 0.3), (b, 0.5), (c, 0.6)\}$, $C = \{(a, 0.1), (b, 0.8), (c, 0.7)\}$ Consider $T = \{0, 1, A\}$, and $\sigma = \{0, 1, B\}$. Then (X, T) and (Y, σ) are fts.

Define $f: X \to Y$ by $f(a) = a, f(b) = b$ and $f(c) = c$. Then f is fg^s-open map but not an f-open map as the fuzzy set A is open fuzzy set in X, and its image $f(A) = A$ is not open fuzzy set in Y which is g^s-open fuzzy set in Y.

If $f: X \to Y$ is fg^s-open map and Y is a fuzzy-T's#, then f is a fuzzy open map.

Every fuzzy g^s-open map is fuzzy gs-open map.

Proof: The proof follows from the definition 6.1
The converse of the above theorem need not be true as seen from the following example.

Let $X = Y = [a, b, c]$. Fuzzy sets A, B and C be defined as follows. $A = \{(a, 0.3), (b, 0.5), (c, 0.4)\}$, $B = \{(a, 0.7), (b, 0.5), (c, 0.6)\}$, $C = \{(a, 0.5), (b, 0.3), (c, 0.4)\}$. Consider $T = \{0, 1, A\}$, and $\sigma = \{0, 1, A, B\}$. Then (X, T) and (Y, σ) are fts.

Define $f: X \to Y$ by $f(a) = b, f(b) = a$ and $f(c) = c$. Then the function f is fuzzy gs-open map but not an fuzzy g^s-open map as the image of open fuzzy set A in X is $f(A) = C$ open fuzzy set in Y but not g^s-open fuzzy set in Y.

If $f: X \to Y$ is fuzzy gs-open map and Y is a fuzzy-$#T$s space, then faa is fuzzy g^s-open fuzzy map.

Every fuzzy-closed map is fuzzy g^s-closed map.

Proof: The proof follows from the definition 6.2
The converse of the above theorem need not be true as seen from the following example.

In example 6.4, the function f is fuzzy g^s-closed map but not closed fuzzy map as the fuzzy set C is closed fuzzy set in X and its image $f(C) = C$ is g^s-closed fuzzy set in Y but not closed fuzzy set in Y.

If $f: X \to Y$ is fuzzy g^s-closed map and Y is a fuzzy-Ts#, then f is fuzzy closed fuzzy map.

A function $f: X \to Y$ is fg^s-closed iff for each fuzzy set S of Y and for each open fuzzy set U such that $f^{-1}(S) \subseteq U$, there is a g^s-open fuzzy set V of Y such that $S \subseteq V$ and $f^{-1}(V) \subseteq U$.

If a map $f: X \to Y$ is fuzzy gc-ieersolute and fg^s-closed and A is g^s-closed fuzzy set in X and Y is fuzzy-$T^{1/2}$ then $f(A)$ is g^s-closed fuzzy set in Y.

Let $f: X \to Y$ is fuzzy continuous and fuzzy g^s-closed. If A is g^s-closed fuzzy set in X and Y is fuzzy-$T^{1/2}$ then $f(A)$ is g^s-closed fuzzy set in Y.

If $f: X \to Y$ is f-closed a map and $g: Y \to Z$ is fg^s-closed maps, then $g \circ f: X \to Z$ is fg^s-closed map.

If $f: X \to Y$ and $g: Y \to Z$ are fg^s-closed maps and Y is fuzzy Ts# space, then $g \circ f: X \to Z$ is fg^s-closed map.

Proof: The proof follows from the definition.

Let $f: X \to Y, g: Y \to Z$ be two maps such that $g \circ f: X \to Z$ is fg^s-closed map.
6.18 Theorem
The composition \(g \circ f \) of \(f: X \to Y \) and \(g: Y \to Z \) is \(fg^g\)-open map, if \(f \) is \(fg^g\)-irresolute and \(g \) is \(fg^g\)-open map.

6.19 Theorem
If \(f: X \to Y \) and \(g: Y \to Z \) be two mappings and \(g \circ f: X \to Z \) be composition of those two mappings. Then if \(f \) the the is fuzzy-open and \(g \) is \(fg^g\)-open maps, then \(g \circ f \) is \(fg^g\)-open.

6.20 Theorem
If \(A \) is a fuzzy set closed fuzzy set in \(X \) and \(f: X \to Y \) is bijective, \(f \)-continuous and \(fg^g\)-closed, then \(f(A) \) is a fuzzy set -closed fuzzy set in \(Y \).

6.21 Theorem
If a function \(f: X \to Y \) is \(f \)-continuous and \(fg^g\)-closed in \(X \) and \(A \) is a \(fg^g\)-closed fuzzy set in \(X \), then \(f[A] \) is \(f \)-continuous and \(fg^g\)-closed map.

6.22 Definition [3]
Let \(X \) and \(Y \) be two fts. A bijective map \(f: X \to Y \) is closed fuzzy-homeomorphism (briefly \(f \)-homeomorphism) if \(f \) and \(f^{-1} \) are fuzzy-continuous.

We introduce the following.

6.23 Definition
A function \(f: X \to Y \) is called fuzzy \(g^g \) semi-homeomorphism (briefly \(fg^g\)-homeomorphism) if \(f \) and \(f^{-1} \) are \(fg^g\)-continuous.

6.24 Theorem
Every \(f \)-homeomorphism is \(fg^g\)-homeomorphism

Proof: The proof is follows the definition.
The converse of the above theorem need not be true as seen from the following example.

6.25 Example
Let \(X = Y = \{a, b, c\} \) and the fuzzy sets \(A, B \) and \(C \) be defined as follows. \(A = \{(a, 1), (b, 0), (c, 0)\} \), \(B = \{(a, 1), (b, 1), (c, 0)\} \), \(C = \{(a, 1), (b, 0), (c, 1)\} \). Consider \(T = \{0, 1, A, C\} \) and \(\sigma = \{0, 1, B\} \). Then \((X, T) \) and \((Y, \sigma) \) are fts. Define \(f: X \to Y \) by \(f(a) = a, f(b) = c \) and \(f(c) = b \). Then \(f \) is \(fg^g\)-homeomorphism but not \(f \)-homeomorphism as \(A \) is open fuzzy set in \(X \) and its image \(f(A) = A \) is not open in \(Y, f^{-1} : Y \to X \) is not \(f \)-continuous.

6.26 Theorem
Let \(f: X \to Y \) be a bijective function. Then the following are equivalent:
(1) \(f \) is \(fg^g\)-homeomorphism
(2) \(f \) is \(fg^g\)-continuous and \(fg^g\)-open maps.
(3) \(f \) is \(fg^g\)-continuous and \(fg^g\)-closed maps.

6.27 Theorem
If \(f: X \to Y, g: Y \to Z \) are \(fg^g\)-homeomorphism and \(g: Y \to Z \) is \(fg^g\)-homeomorphism and \(Y \) is fuzzy-T's# space, then \(g \circ f: X \to Z \) is \(fg^g\)-homeomorphism.

6.28 Definition
Let \(X \) and \(Y \) be two fts. A bijective map \(f: X \to Y \) is called fuzzy \(g^g \) semi-homeomorphism (briefly \(fg^g\)-semi-homeomorphism) if \(f \) and \(f^{-1} \) are fuzzy \(g^g \)-irresolute.

6.29 Theorem
Let \(X, Y, Z \) be fuzzy topological spaces and \(f: X \to Y, g: Y \to Z \) is \(fg^g \)-semi-homeomorphisms then their composition \(g \circ f: X \to Z \) is \(fg^g \)-semi-homeomorphism.

Proof: The following proof is omitted.

6.30 Theorem
Every \(fg^g \)-semi-homeomorphism is \(fg^g\)-homeomorphism.

Proof: The proof follows from the definition.

7. CONCLUSION
In this paper, the attempt has been made to study that on \(g^g\)-semi open fuzzy sets and fuzzy \(g^g\)-semi-irresolute maps in fuzzy topological spaces. We have discussed some basic definitions. We have discussed some theorems and results based on basic properties of \(g^g\)-semi-closed fuzzy sets in fts. We have discussed some theorems and results based on fuzzy \(g^g\)-semi-closure and
fuzzy $g^\#-$semi interior fuzzy sets in fts. We have discussed some theorems and results based on fuzzy $g^\#-$semi-continuous and fuzzy $g^\#-$semi-irresolute mappings in fts. We have discussed some theorems and results based on fuzzy $g^\#$-semi-open maps and fuzzy $g^\#$-semi-closed maps in fts.

8. REFERENCES

[10] Sadanand. N. Patil, on μ-closed fuzzy sets, Fuzzy μ-continuous maps and fuzzy μ irresolute maps in fuzzy topological space, Submitted.

