

ISSN: 2454-132X Impact factor: 4.295 (Volume 4, Issue 4)

Available online at: www.ijariit.com

Some allied gsp-continuous, open and closed functions in topology

Govindappa Navalagi
<u>gnavalagi@hotmail.com</u>
Kalpataru Institute of Technology, Tiptur, Karnataka

R. G. Charantimath

<u>rgcharantimath@gmail.com</u>

Kalpataru Institute of Technology, Tiptur, Karnataka

ABSTRACT

In 1995, J.Dontchev has defined and studied the notions of gsp-open sets, gsp-closed sets, gsp-continuous functions and gsp-irresolute functions in topological spaces. In the literature, many topologists have been utilized and defined various concepts using these gsp-closed sets in topology. Quite recently, Navalagi et al have utilized these gsp-closed sets and gsp-continuity to define and study the concepts of gsp-separation axioms, gsp-Hausdorff spaces, allied gsp-regularity axioms and allied gsp-normality axioms in topology. In this paper, we define and study the notions of allied - gsp-continuity, gsp-openness, gsp-closedness, totally - gsp- continuous functions and gsp-compactness in topology.

Mathematics Subject Classification (2010): 54A05, 54B05, 54C08, 54D10

Keywords— Semipreopen sets, gsp-closed sets, Preopen sets, gs-closed sets, rps-closed sets, gsp-irresoluteness, pre-gsp-continuous functions and rps-irresolute functions

1. INTRODUCTION

In 1990, Arya et al [4] have defined the concepts of gs-closed sets and gs-open sets. In 1995, J. Dontchev [7] has defined and studied the concepts of gsp-closed sets, gsp-continuity and gsp-irresoluteness in topological spaces. In 1998 and 1999, T. Noiri et al [17], Arokiarani et al. [3] have defined and studied the concepts of gp-closed sets, gp-continuity, gp-irresoluteness and pregp-continuity in topology. In 2010 and 2011 respectively, T. Shyla Isac Mary et al [20&21] have defined and studied the concepts of rps-closed sets, rps –irresolute functions in topology. Quite recently, Navalagi et. al have utilized these gsp-closed sets and gsp-continuity to define and study the concepts of gsp-separation axioms [15], gsp-Hausdorff spaces[16], allied gsp-regularity axioms[13] and allied gsp-normality axioms[14] in topology. In this paper, we define and study the notions of allied-gsp-continuity, gsp-openness, gsp-closedness, totally – gsp- continuous functions and gsp-compactness in topology.

2. PRELIMINARIES

Throughout this paper (X,τ) and (Y,σ) (or simply X and Y) denote topological spaces on which no separation axioms are assumed unless explicitly stated. If A be a subset of X, the closure of A and the interior of A is denoted by Cl(A) and Int(A), respectively. A subset A of a space X is called regular open (in brief, r-open) if A =Int Cl(A) and regular closed (in brief, r-closed) if A = Cl Int(A).

We give the following define are useful in the sequel:

Definition 2.1: The subset of A of X is said to be.

- (i) semiopen [9] set if $A \subset Cl Int(A)$.
- (ii) A pre-open [10]set, if $A \subset Int(Cl(A))$
- (iii) A semi-preopen[2] set, if $A \subset Cl(Int(Cl(A)))$

The compliment of a semiopen (resp.,propen , semipreopen) set is called semiclosed[5] [(resp.,preclosed [8], semipreclosed [2]) set in space X. The family of all pre-open (resp. semipre-open) sets of a space X is denoted by PO(X) (resp., SPO(X)) and that of pre-closed (resp.semipre-closed) sets of a space X is denoted by PF(X), (resp.,SPF(X)).

Definition 2.2: Let be a subset of a space X. Then,

- (i) the semiclosure [5] of A and denoted by sCl(A) is the intersection of all semiclosed sets of X containing subset A.
- (ii) the preclosure [8] of A and denoted by pCl(A) is the intersection of all preclosed sets of X containing subset A.
- $(iii) \ the \ semipreclosure \ [2\] \ of \ A \ and \ denoted \ by \ spCl(A) \ is \ the \ intersection \ of \ all \ semipreclosed \ sets \ of \ X \ containing \ subset \ A.$

Navalagi Govindappa, Charantimath R. G.; International Journal of Advance Research, Ideas and Innovations in Technology Similarly, one can define the sInt(A), pInt(A), spInt(A) operators.

Definition 2.3: A sub set A of a space X is said to be:

- (i) a generalized semiclosed (briefly, gs-closed) [4] set if $sCl(A) \subseteq U$, whenever $A \subseteq U$ and U is open set in X.
- (ii) a generalized semi-preclosed (briefly, gsp-closed) [7] set if $spCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (iii) a generalized pre-closed (briefly, gp-closed) [17] set if $pCl(A) \subseteq U$ whenever $A \subseteq U$ and U is open in X.
- (iv) a regular presemiclosed (briefly, rps-closed) set [20] if $spCl(A) \subset U$, whenever $A \subset U$ and U is rg-open in X.

The complement of a g-closed (resp, gs-closed, gsp-closed, gp-closed, rps-closed) set in X is called g-open (resp. gs-open, gsp-open, gp-open, rps-open) set in X. The family of all gsp-open sets of X is denoted by GSPO(X).

Definition 2.4 [15]: The gsp-closure of A and is denoted by gspCl(A) is the intersection of all gsp-closed sets that contain A.

Definition 2.5: A function $f: X \rightarrow Y$ is called:

- (i) semiprecontinuous [11] if the inverse image of each open set of Y is semipreopen in X.
- (ii) semipre-irresolute [11] if the inverse image of each semipreopen set of Y is semipreopen in X

Definition 2.6: A function $f: X \rightarrow Y$ is called:

- (i) gp-continuous [3] if the inverse image of each closed set of Y is gp-closed in X.
- (ii) gp-irresolute [3] if the inverse image of each gp-closed set of Y is gp-closed in X.
- (iii) gsp-continuous [7] if the inverse image of each closed set of Y is gsp-closed in X.
- (iv) gsp-irresolute [7] if the inverse image of each gsp-closed set of Y is gsp-closed in X.
- (v) rps-continuous [21] if the inverse image of each closed set of Y is rps-closed in X.
- (vi) rps-irresolute [21] if the inverse image of each rps-closed set of Y is rps-closed in X.
- (vii)(rps, gsp)-continuous[16] if the inverse image of rps-open set of Y is gsp-open set in X.

Definition 2.7[12]: A function $f: X \to Y$ is said to be generalized semipreopen (briefly, gsp-open) if for each open set U of X, f(U) is gsp-open in Y

Definition 2.8[12]: A function $f: X \to Y$ is said to be generalized semipreclosed (briefly, gsp-closed) if for each closed set F of X, f(F) is gsp-closed in Y.

Definition 2.9[19]: A subset A of a space X is called a sg-clopen if it is both sg-open set and sg-closed set.

Definition 2.10[19]: A function $f: X \rightarrow Y$ is called totally continuous if the inverse image of each open subset of Y is clopen subset of X.

Definition 2.11[19]: A function $f: X \rightarrow Y$ is called

- (i) a totally semi generalized continuous(briefly, totally sg-continuous) if the inverse image of every open subset of Y is a sg-clopen(ie sg-open and sg-closed) subset of X.
- (ii) a strongly semi generalized continuous(briefly, strongly sg-continuous) if the inverse image of every subset of Y is a sg-clopen subset of X.

Definition 2.12[15]: A space X is said to be gsp- T_2 if for any pair of distinct points x,y of X, there exist disjoint gsp-open sets U and V such that $x \in U$ and $y \in V$.

3. ALLIED GSP-CONTINUOUS FUNCTIONS

In view of Definition 2.6, we have following:

Lemma 3.1: Let A be subset of a space X. Then,

- (i) If A is semi-preclosed set then it is rps –closed.
- (ii) If A is preclosed set then it is rps -closed.
- (iii) If A is rps-closed set then it is gsp -closed.
- (iv) If A is gs-closed set then it is gsp-closed set.
- (v) If A is gp-closed set then it is gsp-closed set.

Then, it is clear from the above lemma -3.1 that the folloing hold good:

Lemma 3.2: Let $f: X \to Y$ be a function, then

- (i) If f is semipre-continuous, then f is rps continuous
- (ii) If f is pre-continuous, then f is rps continuous
- (iii) If f is rps -continuous, then f is gsp continuous
- (iv) If f is gs -continuous, then f is gsp-continuous
- (v) If f is gp -continuous, then f is gsp- continuous

Easy proof of the above lemma is trivial.

We, define the following.

Navalagi Govindappa, Charantimath R. G.; International Journal of Advance Research, Ideas and Innovations in Technology

Definition 3.3: A function $f: X \rightarrow Y$ is called:

- (i) (s, gsp)-continuous if the inverse image of each semi open set of Y is gsp-open in X.
- (ii) (gs, gsp)-continuous if the inverse image of gs open set of Y is gsp-open set in X.
- (iii) (gp, gsp)-continuous if the inverse image of gp- open set of Y is gsp-open set in X.

We, prove the following:

Lemma 3.4: The following statements are equivalent for a function $f: X \rightarrow Y$:

- (i) f is (s,gsp)-continuous,
- (ii) For each point x of X and each semi-neighbourhood V of f(x), there exists a gsp-neighbourhood U of x such that $f(U) \subset V$.
- (iii) For each x in X and each semiopen set V of Y , there exists a gsp-open set U in X such that $f(U) \subset V$. Proof: Obvious.

We, define the following:

Definition 3.5: A set $U \subset X$ is said to be a gs-neighbourhood of a point $x \in X$ if there exists gs-open set A in X such that $x \in A \subset U$.

Lemma 3.6: The following statements are equivalent for a function $f: X \rightarrow Y$:

- (i) f is (gs, gsp)-continuous
- (ii) inverse image of each gs-closed set of Y is gsp-closed set in X.
- (iii) $f(gspCl(A)) \subset gsCl(f(A))$ for each set A in X.
- (iv) $gspCl(f^{-1}(B)) \subset f^{-1}(gsCl(B))$ for each set B in Y.
- (v) $f^{-1}(gsInt(B)) \subset gspInt(f^{-1}(B))$ for each set B in Y.
- (vi) For each point x_a in X and each gs-open set B of Y with $f(x_a) \in B$, there exists a gsp-open set A in X such that $x \in A$ and $f(A) \subset B$.

Proof: Obvious.

Lemma 3.7: Let $f: X \to Y$ be a bijective function. The f is (gp,gsp)-continuous iff $gpInt(f(A)) \subset f(gspInt(A))$ for each set A in X. Proof: Obvious.

Lemma 3.8: Let $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ be two functions:

- (i) If f is gsp-irresolute function and g is (gs, gsp) -continuous functions, then their composition gof is (gs, gsp) -continuous.
- (ii) If f is gsp-irresolute function and g is (gp, gsp) -continuous functions, then their composition gof is (gp, gsp) -continuous.
- (iii) If f is gsp-irresolute function and g is (rps, gsp) -continuous functions, then their composition gof is (rps, gsp) -continuous.
- $(iv) \ \ If \ f \ is \ (gs, \ gsp) \ \ continuous \ function \ and \ g \ is \ gs \ continuous \ functions, \ then \ their \ composition \ gof \ is \ gsp \ continuous.$
- (v) If f is (gp, gsp) continuous function and g is gp -continuous functions, then their composition gof is gsp -continuous.
- $(vi) \ \ If \ f \ is \ (rps, \ gsp) \ \ continuous \ function \ and \ g \ is \ rps \ continuous \ functions, \ then \ their \ composition \ gof \ is \ gsp \ continuous.$
- (vii)If f is (s, gsp) continuous function and g is semi-continuous functions, then their composition gof is gsp -continuous. Proof: Obvious.

We, prove the following:

Theorem 3.9 : If function $f: X \to Y$ is gsp-irresolute , then for every subset B of X, $f(gspC(A) \subset gspCl(f(A))$. Proof is easy and hence omitted.

We, define the following:

Definition 3.10:

- (i) A collection $\{A_{\alpha}: \alpha \in \nabla\}$ of gsp-open sets in a space X is called gsp-open cover of B of X if $B \subset \cup \{A_{\alpha}: \alpha \in \nabla\}$ holds.
- (ii) A space X is called gsp-compact if every gsp-open cover of X has a finite subcover.
- (iii) A subset B of X is called gsp-compact relative to X if for every collection $\{A_\alpha : \alpha \in \nabla\}$ of gsp-open subsets of X such that B $\subset \cup \{A_\alpha : \alpha \in \nabla\}$, there exists a finite subset ∇_0 of ∇ such that B $\subset \cup \{A_\alpha : \alpha \in \nabla_0\}$.
- (iv) A subset B of X is said to be gsp-compact if B is gsp-compact as a subspace of X.

Now, we prove the following:

Theorem 3.11: Every gsp-closed subset of gsp-compact space X is gsp-compact relative to X.

Proof: Let A be gsp-closed subset of X, then X-A is gsp-open set in X. Let $K = \{H_\alpha : \alpha \in \nabla \}$ be a cover of A by gsp-open subsets of X. Then, $G = K \cup (X-A)$ is a gsp-open cover of X, i.e., $X = \cup (\{H_\alpha : \alpha \in \nabla \} \cup (X-A))$. By hypothesis, X is gsp-compact, hence G has a finite subcover of X say, $(H_1 \cup H_2 \cup H_3 \cup \cup H_n) \cup (X-A)$. But A and (X-A) are disjoint, hence $A \subset (H_1 \cup H_2 \cup H_3 \cup \cup H_n)$. So, K contains a finite subcover for A, therefore A is gsp-compact relative to X.

Theorem 3.12: Let $f: X \rightarrow Y$ be a function:

- (i) If X is gsp-compact and f is gsp-continuous bijective, thn Y is compact.
- (ii) If f is gsp-irresolute and G is gsp-compact relative to X, then f(G) is gsp-compact relative to Y.
- (iii) If X is compact and f is continuous surjective, then Y is gsp-compact.

Proof is similar to Th.4.3 due to [1]

We, define the following:

Navalagi Govindappa, Charantimath R. G.; International Journal of Advance Research, Ideas and Innovations in Technology

Definition 3.13: A sub set A of a space is called

- (i) a gsp-clopen if it is both gsp-open set and gsp-closed set.
- (ii) a gs-clopen if it is both gs-open set and gs-closed set.

Clearly, every sg-clopen set is gsp-clopen set and every gs-clopen set is gsp-clopen set.

Definition 3.14: A function $f: X \to Y$ is said to be totally gsp-continuous if inverse image of each open subset of Y is a gsp-clopen subset of X.

Clearly, every totally continuous function is totally gsp-continuous and every totally sg-continuous function is totally gsp-continuous function.

Definition 3.15: A function $f: X \to Y$ is said to be G- gsp-continuous if inverse image of each subset of Y is a gsp-clopen subset of X.

Clearly, every G-gsp-continuous function is totally gsp-continuous function.

Theorem 3.16: Every totally gsp-continuous functions into T₁-space is G- gsp-continuous.

Proof: In a T₁-space, singltons are closed. Hence f ⁻¹(A) is gsp-clopen in X for every subset A of Y.

Definition 3.17: A space X is said to be gsp-connected if X is cannot be experessed as the union of two non empty disjoint gsp-open sets.

Theorem 3.18: If f is totally gsp-continuous function from a gsp-connected space X onto any space Y, then Y is an indiscrete space

Proof: Suppose that Y is not indiscrete. Let A be a proper non-empty open subset of Y. Then $f^{-1}(A)$ is a proper non empty gspopen subset of X, which is a contradiction to the fact that X is gsp-connected.

Theorem 3.19: A space X is gsp- T_2 if and only if for any pair of distinct points x,y of X there exist gsp-open sets U and V such that $x \in U$ and $y \in V$ and $gspCl(U) \cap gspCl(V) = \emptyset$.

Proof: Necessity: Suppose that X is $gsp-T_2$. Let x and y be distinct points of x. There exist gsp-open sets U and V such that $x \in U$ and $y \in V$ and $y \in$

Sufficiency: Obvious.

Theorem 3.20: If f: X \longrightarrow Y is a totally gsp-continuous injective and Y is T_0 then X is gsp- T_2

Proof: Let x and y be any pair of distinct points of X, Then $f(x) \neq f(y)$. Since Y is T_0 there exists an open set U containg say, f(x) but not f(y). Then $x \in f^{-1}(U)$ and $y \notin f^{-1}(V)$. Since f is totally gsp-continuous, $f^{-1}(U)$ is a gsp-clopen subset of X. Also $x \in f^{-1}(U)$ and $y \in X - f^{-1}(U)$. Then by Theorem 3.10, X is gsp- T_2 .

We, define the following:

Definition 3.21: A function $f: X \to Y$ is said to be (rps, gsp)-open if for each rps-open set U of X, f(U) is gsp-open in Y.

Definition 3.22: A function $f: X \to Y$ is said to be (gsp, rps)-open if for each gsp-open set U of X, f(U) is rps-open in Y.

Definition 3.23: A function $f: X \to Y$ is said to be (gs, gsp)-open if for each gs-open set U of X, f(U) is gsp-open in Y.

Definition 3.24: A function $f: X \to Y$ is said to be (gp, gsp)-open if for each gp-open set U of X, f(U) is gsp-open in Y.

We, state the following:

Theorem 3.25: A surjective function $f: X \to Y$ is (rps, gsp)-open if and only if for each subset B of Y and each rps- closed F of X containing $f^{-1}(B)$, there exists gsp-closed set H of Y such that $B \subset U$ and $f^{-1}(H) \subset F$.

Theorem 3.26: A surjective function $f: X \to Y$ is (gs, gsp)-open if and only if for each subset B of Y and each gs-closed F of X containing $f^{-1}(B)$, there exists gsp-closed set H of Y such that $B \subset U$ and $f^{-1}(H) \subset F$.

Theorem 3.27: A surjective function $f: X \to Y$ is (gp, gsp)-open if and only if for each subset B of Y and each gp-closed F of X containing $f^{-1}(B)$, there exists gsp-closed set H of Y such that $B \subset U$ and $f^{-1}(H) \subset F$.

We, define the following:

Definition 3.28: A function f: $X \rightarrow Y$ is said to be (rps,gsp)-closed if for each rps-closed set U of X, f(U) is gsp-closed in Y.

Definition 3.29: A function f: $X \to Y$ is said to be (gp, gsp)-closed if for each gp-closed set U of X, f(U) is gsp-closed in Y.

Definition 3.30: A function $f: X \to Y$ is said to be (gs, gsp)-closed if for each gs-closed set U of X, f(U) is gsp-closed in Y.

We, prove the following:

We, recall the following from [12].

Theorem 3.31: A surjective function $f: X \to Y$ is gsp-closed if and only if for each subset B of Y and each open set U of X containing $f^{-1}(B)$, there exists gsp-open set V of Y such that $B \subset V$ and $f^{-1}(V) \subset U$.

Proof: Suppose that f is gsp-closed. Let B be any subset of Y and U be open set of X containing $f^{-1}(B)$. Put V = Y - f(X - U). Then the complement of X - VX - V = Y - V = f(X - U). Since X - U is closed in X and f is gsp-closed, f(X - U) = X - V is gsp-closed. Therefore V is gsp-open in Y. It is easy ti see that $B \subset V$ and $f^{-1}(V) \subset U$.

Navalagi Govindappa, Charantimath R. G.; International Journal of Advance Research, Ideas and Innovations in Technology

Conversely, Let F be any closed set in X. Put B = Y - f(F), then we have $f^{-1}(B) \subset X - F$ and X-F is open set of in X. Then by the assumption, there exists gsp-open set V of Y such that $B = Y - f(F) \subset V$ and $f^{-1}(V) \subset X - F$. Now $f^{-1}(V) \subset X - F$ implies $V \subset Y - f(F) = B$. Also $B \subset V$ and so B = V Therefore, we obtained f(F) = Y - V and hence f(F) is gsp-closed in Y. This shows that f is gsp-closed.

We, state the following:

Theorem 3.32: A surjective function $f: X \to Y$ is (rps, gsp)-closed if and only if for each subset B of Y and each rps- open F of X containing $f^{-1}(B)$, there exists gsp-open set H of Y such that $B \subset U$ and $f^{-1}(H) \subset F$.

Theorem 3.33: A surjective function $f: X \to Y$ is (gs, gsp)-closed if and only if for each subset B of Y and each gs-open F of X containing $f^{-1}(B)$, there exists gsp-open set H of Y such that $B \subset U$ and $f^{-1}(H) \subset F$.

Theorem 3.34: A surjective function $f: X \to Y$ is (gp, gsp)-closed if and only if for each subset B of Y and each gp-open F of X containing $f^{-1}(B)$, there exists gsp-open set H of Y such that $B \subset U$ and $f^{-1}(H) \subset F$. Proofs are all similar to Theorem 3.31 above.

4. REFERENCE

- [1] A.M.Al-Shibani, rg-compact spaces and rg-connected spaces, Math.Pannonica, 17/1, (2006), 61-68.
- [2] D.Andrijevic, Semipreopen sets, Math. Vensik 38(1), (1986), 24-32.
- [3] I Arokiarani, K.Balachandran and J.Dontchev "Some characterizations of gp-irresolute and gp-contiuous maps between Topological spaces" Men.Fac.Sci.Kochi Univ(Math) 20(1999), 93-104.
- [4] S.P.Arya and T.M.Nour, Characterizations of s-normal spaces, Indian J.pure appl. Math., 21(1990), 717-719.
- [5] N.Biswas, on characterization of semicontinuous functions, Atti.Accad. Naz. Lincei. Rend.Cl.Sci., Fis.Mat., Nature, 48(8) (1970), 399-402.
- [6] Bohn and Lee, Semitopological groups, Amer.Math.Monthly, 72(1965), 996-998.
- [7] J.Dontchev, On generalizing semi-preopen sets, Mem. Fac. Sci. Kochi. Univ. . Ser. A. Math, 6(1995), 35-48.
- [8] S.N.El-Deeb, I.A. Hasanein, A.S.Mashhour and T. Noiri, On p-regular spaces, Bull Math. Soc. Sci. Math. R.S.Roumanie (N.S), 27(75), (1983), 311-315.
- [9] N.Levine, Semiopen sets and semicontinuity in topological spaces, Amer.Math.Monthly, 70(1963), 36-41.
- [10] A.S. Mashhoour, M.E. Abd El-Monsef and S.N .El-Deeb, On Pre continuous and Weak Precontinuous Mappings, Proc. Math. Phys. Soc. Egypt, 53(1982), pp.47-53.
- [11] G.B.Navalagi, on semi-pre continuous functions and properties of generalized semi-pre closed sets in topology, IJMS, 29(2) (2002), 85-98.
- [12][12] G.Navalagi, R. G. Charantimath, Nagarajappa C.S. and Meenakshi I.N., Some more properties of gsp-closed sets in topology, Amer.J. Of Math.and Sciences, Vol.2 no.1 (Jan-2013), 193-199.
- [13] Govindappa Navalagi and R. G. Charantimath, Some allied regular spaces via gsp-open sets in topology, IOSR Journal of Mathematics, Vol.14, Issue 4 Ver. I (Jul-Aug 2018), 09-15.
- [14] Govindappa Navalagi and R.G.Charantimath, Some allied normal spaces via gsp-open sets in topology, Int.J.of Engineering Research and Application, Vol.8, Issue 7, (Part-I) July 2018, 21-25
- [15] Govindappa Navalagi and R.G.Charantimath, Properties of gsp-separation axioms in topology, Inter. J. of Math and Statistics Invention, Vol.6, Issue 4, July 2018,04-09.
- [16] Govindappa Navalagi and R.G.Charantimath, Properties of gsp-Hausdorff spaces in topology, Inter. J. of Research in Engineering and Innovation, Vol.2, Issue 4, (2018), 360-363.
- [17] T. Noiri, H. Maki and J. Umehara, Generalized preclosed functions, Mem.Fac.Sci.Kochi. Univ. Ser.A, Math, 19(1998),13-24
- [18] I.L.Reily and M.K. Vamanamurthy, α-continuity in Topological spaces, Acta Maths. Hung, 45(1-2) (1986), 27-32.
- [19] O.Ravi , S.Ganesan and Chandrasekar, On totally sg-continuity , strongly sg-continuity and Contrasg-continuity , Gen, Math. Notes., Vol. 7, No. 1, Nov. 2011, 13-24.
- [20] T.Shyla Isac Mary and P.Thangavelu, On regular pre-semiclosed sets in topological spaces, KBM J. of Mathematical Sciences and Computer Applications, Vol.1 (1) (2010),9-17.
- [21] T.Shyla Isac Mary and P.Thangavelu, on rps- continuous and rps-irresolute functions, International J. of Mathematical archive, 2(1) (2011), 159-162.
- [22] P.Sundaram, H.Maki and K.Balachandran, semi generalized continuous maps and semi-T_{1/2}spaces, Bull. Fukuoka Univ. Ed. Part III, 40(1991), 33-40.