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ABSTRACT 
 

A higher-dimensional cosmological model with the gravitational and cosmological constants generalized as coupling scalars in 

Einstein theory is considered in the framework kaluza-klein theory of gravitation. A general method of solving the field 

Equations is given. Exact solutions for matter distribution in cosmological model satisfying 𝑮 = 𝑮𝒐 (
𝑹

𝑹𝒐
)

𝒎

is presented. The 

corresponding physical interpretations of the cosmological solutions are also discussed. 
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1. INTRODUCTION 
Today, a challenging problem is the unification of gravity with other fundamental forces in nature. In this time, the space-time 

dimensions to be more than four is the most recent efforts. In the context of Kaluza-Klein and superstring theories, higher 

dimensions have acquired much significant. Kaluza-klein achievements are shown that five-dimensional general relativity 

contains both Einstein’s four-dimensional theory of gravity and Maxwell’s theory of electromagnetism. 

 

In recent years, multidimensional cosmological models have been studied by several methods. Kaluza-klein inhomogeneous 

cosmological models with and without cosmological constants have studied by Chaterzee and Benerjee (1993) and Banerjee et. al 

(1995) respectively. Kaluza-Klein cosmological models in generalizes scalar-tensor theory and Lyra geometry have been studied 

by Chakraborty and Ghosh (2000) and Rahaman and Bera (2001), respectively. However, there are a few works in a literature 

where variable 𝐺 and  have been consider in ha igher dimension. 

 

A theory of gravitation using 𝐺 and  as non constant coupling scalar has been used by Beesham (1986) and Abdel Rahaman 

(1990). The motivation was to include a 𝐺 coupling constant of graviaty as a pioneer by Dirac in (1937). 

 

The evolution of the universe is described by Einstein’s field Equations together with perfect fluid and an Equation of state in 

relativistic and the observational cosmology. Einstein field Equation contains two parameters, the cosmological constant  and the 

gravitational constant 𝐺. The gravitational constant 𝐺 plays the role of a coupling constant between geometry of space and matter 

content in Einstein field Equations. The cosmological constant  interpreted as the energy density of the vacuum in general 

relativistic quantum field theory. If we assume the equality of gravitational and inertial mass and gravitational time dilation in 

Einstein theory we must required that the Equation of motion of particle and photon does not contain 𝐺 and . In any case the 

strongest constraints are presently observed 𝐺𝑜 value and observational limit 𝑜. Sistero (1991) found an exact solution for zero 

pressure models satisfying 𝐺 = 𝐺𝑜 (
𝑅

𝑅𝑜
)

𝑚

. We have obtained exact solution for matter distribution in cosmological models in 

(2009) satisfying 𝐺 = 𝐺𝑜 (
𝑅

𝑅𝑜
)

𝑚

. Khadekar and Kamdi (2010) have obtained exact solutions for Zeldovich matter distribution in 

the framework of Kaluza-Klein theory of gravitation. 

In this paper, we present an exact solution for matter distribution in higher dimensional cosmological model satisfying  

𝐺 = 𝐺𝑜 (
𝑅

𝑅𝑜

)
𝑚

 

2. MODEL AND FIELD EQUATIONS 
We consider the five-dimensional Robertson-Walker metric: 

 𝑑𝑠2 = 𝑑𝑡2 − 𝑅2(𝑡) [
𝑑𝑟2

1−𝑘𝑟2 + 𝑟2(𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑∅2)] + 𝐴2(𝑡)𝑑𝑥𝑛
2
                                          (1) 
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Where k is the curvature index which can take up the values (−1, 0, +1) corresponding to the open, flat and closed universe 

respectively and 𝑅(𝑡) is the scale factor. The universe is assumed to be filled with distribution of matter represented by energy-

momentum tensor of perfect fluid 

 𝑇𝑎𝑏 = −𝑝𝑔𝑎𝑏 + (𝑝 + 𝜌)𝑢𝑎𝑢𝑏                                                                                (2) 

Where 𝑝 and 𝜌 are the pressure and energy density of the cosmic matter respectively and 𝑢𝑎 is 

(𝑛 + 4)velocithe ty vector such that 𝑢𝑎𝑢𝑎 = 1. 

The Einstein field Equations are given by: 

 𝑅𝑎𝑏 −
1

2
𝑅𝑔𝑎𝑏 = 8𝐺𝑇𝑎𝑏 + 𝑔𝑎𝑏                                                                              (3) 

Where 𝑇𝑎𝑏  the matter energy-momentum tensor, 𝑔𝑎𝑏  the metric tensor, 𝐺 and  are coupling scalars. 

The conservation Equation for variable 𝐺 and  is given by 

 𝜌̇ + (3 + 𝑛)
𝑅̇

𝑅
(𝜌 + 𝑝) = − (

𝐺̇

𝐺
𝜌 +

̇

8𝜋𝐺
)                                                                          (4) 

Using co-moving co-ordinates 

 𝑢𝑎 = (1, 0, 0, 0 … , 0)                                                                                        (5) 

In Equation (2) and with the line element (1), Einstein’s field Equation (3) becomes 

 8𝜋𝐺𝜌 = 3 [(𝑛 + 1)
𝑅̇2

𝑅2 +
𝑘

𝑅2] − (𝑡)                                                                           (6) 

 8𝜋𝐺𝑝 = −(𝑛 + 2)
𝑅̈

𝑅
− (𝑛2 + 𝑛 + 1)

𝑅̇2

𝑅2 −
𝑘

𝑅2 + (𝑡)                                                            (7) 

 8𝜋𝐺𝑝 = −3 (
𝑅̈

𝑅
+

𝑅̇2

𝑅2 +
𝑘

𝑅2) + (𝑡)                                                                             (8) 

Where the overdot denotes the differentiation with respect to 𝑡. The usual conservation law (i.e. 𝑇;𝑏
𝑎𝑏 = 0) yields 

 𝜌̇ + (3 + 𝑛)(𝜌 + 𝑝)
𝑅̇

𝑅
= 0                                                                                   (9) 

Using Equation (9) in Equation (4), we have 

 8𝜋𝐺̇𝜌 + ̇ = 0                                                                                         (10) 

Equations (6), (7) and (10) are the fundamental Equations. Equations (6) and (7) may be written as  

 3(𝑛 + 2)𝑅̈ = −8 𝜋𝐺𝑅(3𝑝 + 𝜌) − 3𝑛2 𝑅̇2

𝑅
+ 2𝑅                                                            (11) 

 3(𝑛 + 1)𝑅̇2 = 8 𝜋𝐺𝑅2 [𝜌 +


8 𝜋𝐺
] − 3𝑘                                                                    (12) 

Equation (9) can also be expressed as 

 
𝑑

𝑑𝑡
(𝜌𝑅𝑛+3) + 𝑝

𝑑

𝑑𝑡
(𝑅𝑛+3) = 0                                                                                (13) 

Equations (6), (10) and (13) will be used in the following as fundamental since they are independent. Once the problem is 

determined the integration constant is characterized by the observable parameters 

 𝐻𝑜 =
𝑅̇𝑜

𝑅𝑜
                                                                                                    (14) 

 𝜎𝑜 =
4𝜋

3

𝐺𝑜𝜌𝑜

𝐻𝑜
2                                                                                                 (15) 

 𝑞𝑜 = −
𝑅̈𝑜

𝑅𝑜
𝐻𝑜

2                                                                                                (16) 

 𝜖𝑜 =
𝑝𝑜

𝜌𝑜
                                                                                                    (17) 

Which must satisfy Einstein’s Equations at present cosmic time 𝑡 𝑜: 

 𝑜 = 3𝐻𝑜
2 [𝜎𝑜(3𝜖𝑜 + 1) −

𝑛+2

2
𝑞𝑜 +

𝑛2

2
]                                                                        (18) 

 
𝑘

𝑅𝑜
2 = 𝐻𝑜

2 [3(1 + 𝜖𝑜)𝜎𝑜 −
𝑛+2

2
𝑞𝑜 +

(𝑛2−2𝑛−2)

2
]                                                                  (19) 

And the conservation Equation (10) can be written as: 

 ̇𝐺𝑜 + 6𝐺𝑜̇𝐻𝑜
2𝜎𝑜 = 0                                                                                     (20) 

 

Solutions: 

In this work we adopt a method similar to that introduced by Sistero (1971), for 𝐺 and  constants. We assume the global 

‘Equation of state’, 

 𝑝 =
1

3
𝜌∅                                                                                                 (21) 

Where, ∅ is a function of the scale factor R. 

From Equations (13) and (21), we obtain 

 
1



𝑑

𝑑𝑅
+

(𝑛+3)

3

∅

𝑅
= 0                                                                                        (22) 

Where,                                                                       = 𝜌𝑅𝑛+3                                                                                             (23) 
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In Equation (22), either ∅ or   may be taken to be an arbitrary function. If ∅ is a given explicit function of 𝑅, then Equation (21) 

is determined, and  follows from Equation (22), 

 = 𝑜𝑒𝑥𝑝 [− ∫
(𝑛+3)

3

∅

𝑅
𝑑𝑅]                                                                               (24) 

Conversely, if   is given, ∅ immediately follows from Equation (22) 

∅ = −
3

(𝑛+3)

𝑅



𝑑

𝑑𝑅
                                                                                           (25) 

The Friedman Equation (6) with Equation (23) becomes: 

3(𝑛 + 1)𝑅̇2 = 8 𝜋𝐺 𝑅−(𝑛+1) + 𝑅2 − 3𝑘                                                                (26) 

Equations (10) and (23) with 
𝑑

𝑑𝑡
= 𝑅̇ (

𝑑

𝑑𝑅
) give, 

 8𝜋
𝑑𝐺

𝑑𝑅
+ −1𝑅𝑛+3 𝑑

𝑑𝑅
= 0                                                                                       (27) 

Finally if 𝐺 = 𝐺(𝑅) is given, we integrate Equation (27) to yield  = (𝑅). Equation (26) determines 𝑅 = 𝑅(𝑡) and the problem 

is solved;  = (𝑅) may be given instead and 𝐺(𝑅) derives from Equation (27), giving in turn 𝑅(𝑡) from integration of Equation 

(26the the ). 

 

As an example of matter distribution, we consider a case of ∅ = 2, a constant (numerical) in Equation (24) thereby giving the 

relation 

  = ρo (
Ro

R
)

2

3
(n+3)

Ro

1

3
(𝑛+3)

                                                                          (28) 

Substituting the condition 

 𝐺 = 𝐺𝑜 (
𝑅

𝑅𝑜
)

𝑚

                                                                                        (29) 

Into Equation (27) with  from Equation (28) we have 

  = 𝑜 + 𝐵𝑚 {1 − (
𝑅

𝑅𝑜
)

𝑚−
5

3
(𝑛+3)

} 𝑅𝑜
−

2

3
(𝑛+3)

                                                                (30) 

where,                                                                         𝐵𝑚 =
6𝑚

𝑚−
5

3
(𝑛+3)

𝜎0𝐻𝑜
2                                                                                   (31) 

For 𝑚 ≠
5

3
(𝑛 + 3), 𝐵𝑚 is a parameter related to the integration constant of Equation (27). 

From Equation (18), we have 

 𝑜 = 3𝐻𝑜
2 [3𝜎𝑜 −

𝑛+2

2
𝑞𝑜 +

𝑛2

2
]                                                                            (32) 

Using Equation (28), (29) and (30), Friedman’s Equation (26) gives 

 𝑅̇2 = 𝛼𝑛𝑅𝑚−
5

3
(𝑛+3)+2 + 𝛽𝑛𝑅2 −

1

𝑛+1
𝑘                                                                        (33) 

Where,                                                𝛼𝑛 =
−10(𝑛+3)

3(𝑛+1){𝑚−
5

3
(𝑛+3)}

𝐻𝑜
2𝜎𝑜𝑅𝑜

(𝑛+3)−𝑚                                                                  (34) 

 𝛽𝑛 =
𝐻𝑜

2

(𝑛+1)
[{3 +

2𝑚

𝑚−
5

3
(𝑛+3)

𝑅𝑜
−

2

3
(𝑛+3)

} 𝜎𝑜 −
𝑛+2

2
𝑞𝑜 +

𝑛2

2
]                                                        (35) 

Equation (19) can be written as: 

 
𝑘

𝑅𝑜
2 = 𝐻𝑜

2 [5𝜎𝑜 −
(𝑛+2)

2
𝑞𝑜 +

(𝑛2−2𝑛−2)

2
]                                                                       (36) 

And Equation (20) is also satisfied. 
 

It is clear that the models are completely characterized by the set of parameters (𝐻𝑜 , 𝐺𝑜, 𝜎𝑜, 𝑞0, 𝑚 ) with 𝑚 ≠
5

3
(𝑛 + 3), 𝐵𝑚 < 0 

in Equation (31) and 𝛼𝑛 > 0 in Equation (34) when 𝑚 <
5

3
(𝑛 + 3) and vice versa; 𝛽𝑛 ≥ (<)0 according to 𝑚, 𝑛, 𝜎𝑜 and 𝑞𝑜 

combine in Equation (35); 

 

𝑜 ≥ (<)0  As 𝜎𝑜 ≥ (<) {
1

3
(

𝑛+2

2
𝑞𝑜 −

𝑛2

2
)} as given by Equation (32) and the curvature parameter 𝑘 equals +1, 0, −1 according 

to [5𝜎𝑜 −
(𝑛+2)

2
𝑞𝑜 +

(𝑛2−2𝑛−2)

2
] ≥ (<)0 in Equation (36). These relations determine the integration conditions of the Friedman 

Equation (33) and the properties of its solutions. 

 

3. CONCLUSION 

In summary, Einstein’s field Equations are generalized with usual conservation laws 𝑇;𝑏
𝑎𝑏 = 0 by considering the gravity with 𝐺 

and  coupling scalars. Its applications is developed to cosmology. The field Equations for perfect fluid cosmology are formally 

identical to Einstein’s Equations for  𝐺 and  constants including Equation (13). The additional conservation Equation (10) gives 

the coupling of the scalars fields with matter. We find the exact solutions of the matter distribution of higher-dimensional world in 

the framework of Kaluza-Klein theory of gravitation with the global Equation of state of the form 𝑝 =
1

3
𝜌∅ by introducing a 

general method of solving the cosmological field Equations. 
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The solutions illustrate many interesting cases showing initial singularity 𝑅(0) = 0 with an ever expanding or finite cosmic era 

returning to a feature singularity𝑅(𝑡) = 0. 
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