Image Enhancement using DCTWT and Interpolation Techniques

Vasudha Patil
vasudhamahajan20@gmail.com
AISSMS College of Engineering, Pune, Maharashtra

S. P. Bhosale
spbhosale@aissmscoe.com
AISSMS College of Engineering, Pune, Maharashtra

ABSTRACT

As image enhancement is the main issue for biomedical images, this paper aims to present the methods using wavelets to enhance it. Digital image processing plays a vital role in today’s new digital imaging devices. To perform the operation on the low-quality input images, frequency domain manipulations are widely used. Image enhancement is one of the types of processing in digital image processing domain. To perform this operation sophisticated wavelet transformation is used which has better enhancement as compared to their spatial domain counterpart. In the proposed paper, a novel technique for the biomedical image, general images up to certain MB enhancement using dual-tree complex wavelet transform is used. Dual-tree complex wavelet is a parallel combination of two discrete wavelet transform which has the property of shift invariance which results in lesser artifacts generated in output enhanced image. Interpolation is used for high precision in this paper B-spline interpolation gives better results. To perform this operation and finding out the best possible transform among the available wavelet family. Proposed implementation has three transforms namely symlet, D’mayer, Daubechies, and haar transform are used. The input image is first decomposed using a wavelet transform to generate frequency bands, values of PSNR, Q-index and SSIM are calculated for study enhancement results.

Keywords— DCTWT, PSNR, MSE, SSIM, Image enhancement

1. INTRODUCTION

The process of enhancing the quality of the digital image from a low-quality input image[4] is referred to as image enhancement[4][5][10]. Resolution enhancement and contrast enhancement are some types of image enhancement. The quality of the image generated from the source can be degraded due to various factors such as the use of low-resolution image and the problem of aliasing due to improper selection of sampling rate.

The problem of aliasing can be overcome by use of image interpolation[5][9] but the main drawback of using image interpolation is the loss of HP components that are edges of images which are due to smoothing effect caused by image interpolation. In order to reduce the drawback of smoothing instead of using interpolation, the frequency decomposition tool is used nowadays. Currently, various frequency domain techniques are used such as Fourier transform, Stationary wavelet transform(SWT)[2], Discrete wavelet transform (DWT)[2] and Dual Tree complex wavelet transform (DTCWT)[3]. Among these available frequency transformation tools, Dual tree complex wavelet transform is popular because of the property of shift invariance. This transform is used to decompose the input image to be enhanced into different frequency components called frequency sub-bands.

2. DUAL TREE COMPLEX WAVELET TRANSFORM

The dual-tree complex wavelet transform is a filter bank structure formed by using a parallel combination of two DWTs. This combination can be used into multiple levels like 1 level, 2 level, 3 level and so on where the parallel combination is arranged in tree form.

Basic DWT can be expressed mathematically as:

$$\varphi_s, \tau(t) = \frac{1}{2^j} \varphi \left(\frac{t - k * 2^j}{2^j} \right)$$

where s and \tau are scaling and translation parameters of wavelet transform. \varphi is the fundamental mother wavelet.
The complete procedure for the implementation is as follows:

i. Collecting the MRI input image dataset with size

ii. Application of DTCWT and rotational DTCWT to decompose the input MRI images.

iii. Use of Haar transform, Daubechies and symlet transform at each use cases.

iv. Generation of image parameters like PSNR and MSE for each transformation.

4. OBSERVATIONS

To perform the analysis using the proposed implementation, suitable MRI images are taken. dual-tree complex wavelet transform performs decomposition results in frequency bands. After processing these subbands are once again converted into a spatial image by using Inverse dual-tree complex wavelet transform. The values of PSNR and MSE are generated for each input size images. The wavelet transform used here are more reliable and provide exceptional information for dissimilar resolution.

It is found that the values of PSNR and MSE generated by Haar transform based DTCWT are better than implementation done using Daubechies and symlet based DT-CWT.

5. ACKNOWLEDGMENT

Author is thankful to Prof. S. P. Bhosale department of electronics and electrical engineering, AISSMS Coe Pune for his valuable guidance.

6. REFERENCES

[1] Du-Yin Tsai, Yongbum, "A Method of Medical image enhancement using wavelet coefficient mapping function” department of radiological technology, 2014

[7] Pejman Rasti, Hasan Demirel, "Image Resolution enhancement by using interpolation followed by iterative back projection".