Formulation of solutions of standard quadratic congruence of even composite modulus as a product of two odd primes and eight
 Bikashchandra Mukunda Roy
 roybm62@gmail.com
 Jagat Arts, Commerce \& Indiraben Hariharbhai Patel Science College, Goregaon, Maharashtra

Abstract

In this paper, a formula for finding solutions of a standard quadratic congruence of even composite modulus as a product of two different odd primes \& eight is established. It solves the problem directly. It saves the time of calculation. The formulation is the merit of the paper.

Keywords: Chinese Remainder Theorem, even composite modulus, Quadratic Congruence

1. INTRODUCTION

Many mathematicians tried to solve the quadratic congruence of the composite modulus. They proposed a method to find the solutions by using only Chinese Remainder Theorem [1]. Even then many more is remained to do. No formulation is found in the literature. Here, a special type of quadratic congruence of even composite modulus as a product of two odd primes \& eight is considered. The formula for solutions is established $\&$ tested true by solving examples.
Here we consider the congruence

$$
\begin{equation*}
x^{2} \equiv a(\bmod 8 p q) \tag{1}
\end{equation*}
$$

2. NEED OF RESEARCH

The congruence under consideration can be solved by using Chinese Remainder Theorem; it takes a long time to find all the solutions. It is not a fair method for students. No formulation is found in the literature of mathematics. Here lies the need for a research for a formulation. I tried my best to formulate the congruence and the effort is presented in this paper.

3. PROBLEM-STATEMENT

To formulate the solutions of a standard quadratic congruence of the composite modulus of the type: $x^{2} \equiv a(\bmod 8 p q), \mathrm{p} \& \mathrm{q}$ being different odd positive primes.

4. DISCUSSION OF THE EXISTED METHOD [1]

Consider the congruence (1).
It can be split into three congruence

$$
x^{2} \equiv a(\bmod 8) ; x^{2} \equiv a(\bmod p) ; x^{2} \equiv a(\bmod q)
$$

This standard quadratic congruence can be solved separately to get solutions:

$$
\begin{gathered}
x \equiv 1,3,5,7(\bmod 8) \text { if } a \equiv 1(\bmod 8) ;(\text { otherwise, has only two solutions }) \\
x \equiv d, e(\bmod p) ; x \equiv f, g(\bmod q)
\end{gathered}
$$

As "every solvable quadratic congruence of positive odd prime modulus has exactly two solutions [2].
Solving these, sixteen (otherwise eight) solutions can be obtained using Chinese Remainder Theorem.

4.1 Demerits of the proposed method

Definitely, use of "Chinese Remainder Theorem" is a time-consuming calculation. It sometimes becomes a boring task because it is complicated.

Roy Bikashchandra Mukunda; International Journal of Advance Research, Ideas and Innovations in Technology

 4.2 Discussion of the Proposed method (Formulation)Consider the congruence (1).
If $a=b^{2}$, then the congruence becomes: $\quad x^{2} \equiv b^{2}(\bmod 8 p q)$
Two obvious solutions of the congruence are: $x \equiv 8 p q \pm b(\bmod 8 p q)$

$$
\text { i.e. } x \equiv 8 p q+b, \quad 8 p q-b(\bmod 2 p q) \text { i.e. } x \equiv b, 8 p q-b(\bmod 8 p q)
$$

Thus, b is a solution of $x^{2} \equiv b^{2}(\bmod 8 p q)$.
If $a \neq b^{2}$, we add " $k .8 p q$ " to a to get $a+k .8 p q$ with such k such that $a+k .8 p q=b^{2}$ [3]
Then, the two obvious solutions are as before.
Two other obvious solutions are $x \equiv 4 p q \pm b(\bmod 8 p q)$
Because, $x^{2}=(4 p q \pm b)^{2}=16 p^{2} q^{2} \pm 8 p q b+b^{2}=8 p q(2 p q \pm b)+b^{2} \equiv b^{2}(\bmod 8 p q)$
Now, for the other solutions, let $x= \pm(2 p k \pm b)$,
We have

$$
\begin{aligned}
x^{2} & =\{ \pm(2 p k \pm b)\}^{2} \\
& =4 p^{2} k^{2} \pm 4 p k b+b^{2} \\
& =b^{2}+4 p k(p k \pm b) \\
& =b^{2}+4 p k(2 q t) \\
& =b^{2}+t(8 p q), \text { if } k(p k \pm b)=2 q t, \text { for an integer } t . \\
& \equiv b^{2}(\bmod 8 p q), \text { if } k(p k \pm b)=2 q t .
\end{aligned}
$$

Thus, the other solutions are given by:

$$
x \equiv \pm(2 p k \pm b) \text {, if } k(p k \pm b)=2 q t, \text { for some positive integer } t
$$

Therefore, the congruence $x^{2} \equiv b^{2}(\bmod 8 p q)$ always has four obvious solutions $x \equiv 8 p q \pm b ; 4 p q \pm b(\bmod 8 p q)$; and other four solutions: $x \equiv \pm(2 p k \pm b)(\bmod 8 p q)$,
When $k(p k \pm b)=2 q t$, for positive integer t.
4.3 Illustration of the method by an Example

Consider the congruence: $x^{2} \equiv 4=2^{2}(\bmod 120)$.
Here, $120=8.3 .5$ with $p=5, q=3 ; a \neq 1(\bmod 8)$
Thus, the congruence is of the type: $x^{2} \equiv a^{2}(\bmod 8 p q)$. It has eight solutions.

- Solution by existed Method:

Consider $x^{2} \equiv 4(\bmod 120)$.
We see that $120=8.3 .5$
So, the congruence can be explit into the following congruence:

$$
\begin{aligned}
& x^{2} \equiv 4(\bmod 8) \text { i.e. } x^{2} \equiv 4(\bmod 8) \text { giving solutions } x \equiv 2,6(\bmod 8) \\
& x^{2} \equiv 4(\bmod 3) \text { i.e. } x^{2} \equiv 1(\bmod 3) \text { giving solutions } x \equiv 1,2(\bmod 3) \\
& x^{2} \equiv 4(\bmod 5) \text { i.e. } x^{2} \equiv 4(\bmod 5) \text { giving solutions } x \equiv 2,3(\bmod 5)
\end{aligned}
$$

We consider the congruence for Chinese Remainder Theorem.
Thus, we have $x \equiv 2,6(\bmod 8) ; \equiv 1,2(\bmod 3) ; x \equiv 2,3(\bmod 5)$.
So, $a_{1}=2$ or $6 ; a_{2}=1$ or $2 ; a_{3}=2$ or $5 ; m_{1}=8 ; m_{2}=3 ; m_{3}=5$.
We have, $M=[8,3,5]=120 ; M_{1}=15 ; \quad M_{2}=40 ; \quad M_{3}=24$.
Now, $M_{1} x \equiv 1\left(\bmod m_{1}\right)$ i.e. $15 x \equiv 1(\bmod 8)$ i.e. $x \equiv 7(\bmod 8)$ giving $x_{1}=7$.

$$
\begin{array}{lll}
M_{2} x \equiv 1\left(\bmod m_{2}\right) & \text { i.e. } 40 x \equiv 1(\bmod 3) & \text { i.e. } x \equiv 1(\bmod 3) \text { giving } x_{2}=1 . \\
M_{3} x \equiv 1\left(\bmod m_{3}\right) & \text { i.e. } 24 x \equiv 1(\bmod 5) \text { i.e. } x \equiv 4(\bmod 5) \text { giving } x_{3}=4 .
\end{array}
$$

The common solutions are given by $x_{0} \equiv a_{1} M_{1} x_{1}+a_{2} M_{2} x_{2}+a_{3} M_{3} x_{3}(\bmod M)$.
Putting values one must get $x_{0} \equiv 2,22,38,58,62,82,98,118(\bmod 120)$
[Calculations not shown] Isn't a time-consuming method?

- Solution by Formulation:

Consider $x^{2} \equiv 4(\bmod 120)$.
It can be written as: $\quad x^{2} \equiv 4=2^{2}(\bmod 120)$ giving solutions $x \equiv 8 p q \pm b(\bmod 8 p q)$
i.e. $x \equiv 2,118(\bmod 120)$

Therefore, $b=2$ is a solution.
Also, the other two solutions are $x \equiv 4 p q \pm b(\bmod 8 p q)$

$$
\equiv 60 \pm 2(\bmod 120)
$$

$\equiv 58,62(\bmod 120)$

Other solutions are given by $x \equiv \pm(2 p k \pm b)(\bmod 8 p q)$, if $k(p k \pm b)=2 q t$, for some integer t.
So, $x \equiv \pm(2.5 . k \pm 2)(\bmod 120)$, if $k(5 k \pm 2)=6 t$
i.e. $x \equiv \pm(10 k \pm 2)(\bmod 120)$ ifk $(5 k \pm 2)=6 t$.

But $2 .(5.2+2)=24=6.4$ giving $k=2$
Thus, the two solutions are $x \equiv \pm(10.2+2)= \pm 22(\bmod 120)$

$$
\text { i.e. } x \equiv 22,98(\bmod 120)
$$

Also, $4(5.4-2)=72=6.12$ giving $k=4$
Thus, the two solutions are $x \equiv \pm(10.4-2)= \pm 38(\bmod 120)$

$$
\text { i.e. } x \equiv 38,82(\bmod 120)
$$

Thus all the solutions are $x \equiv 2,118 ; 22,98 ; 38,82 ; 62,58(\bmod 120)$
These are the same solutions obtained as in above by existing method but easily and in comparatively less time.
Let us consider another example: $x^{2} \equiv 1(\bmod 280)$.
Now, $280=8.5 .7$ with $p=7, q=5 ; a \equiv 1(\bmod 8)$.
It is also of the type $x^{2} \equiv b^{2}(\bmod 8 p q)$ with $b=1 \boldsymbol{\&}$ has sixteen solutions.
Four obvious solutions are $x \equiv 8 p q \pm b ; 4 p q \pm b$

$$
\begin{aligned}
& \equiv 280 \pm 1 ; 140 \pm 1 \\
& \equiv \mathbf{1}, \mathbf{2 7 9} ; \mathbf{1 3 9}, \mathbf{1 4 1}(\bmod \mathbf{2 8 0})
\end{aligned}
$$

Other possible solutions are given by:
$x \equiv \pm(2 p k \pm b)(\bmod 8 \mathrm{pq})$, if $\mathrm{k} .(\mathrm{p} \mathrm{k} \pm b)=2 q t$ for some positive integer t .

$$
\begin{aligned}
& \text { i.e. } x \equiv \pm(2.7 . k \pm 1)(\bmod 280) \text {, if } \mathrm{k}(7 \mathrm{k} \pm 1)=2.5 . t \\
& \text { i.e. } x \equiv \pm(14 k \pm 1)(\bmod 280) \text {, if } \mathrm{k}(7 \mathrm{k} \pm 1)=10 t
\end{aligned}
$$

For $k=2$, we have $2 .(7.2+1)=30=10.3$
Thus the other two solutions are $x \equiv \pm 14.2+1) \equiv \pm 29 \equiv \mathbf{2 9}, 251(\boldsymbol{\operatorname { m o d }} 280)$.
Also for $k=3$, we have $3 .(7.3-1)=3 .(21-1)=60=10.6$
So, other the two solutions are $x \equiv \pm 14.3-1) \equiv \pm 41 \equiv \mathbf{4 1}, \mathbf{2 3 9}(\boldsymbol{\operatorname { m o d }} 280)$.
Also for $k=5$, we have $5 .(7.5+1)=5 .(35+1)=5.36=180=10.18$
So, the two solutions are $x \equiv \pm(14.5+1) \equiv \pm 71 \equiv \mathbf{7 1}, \mathbf{2 0 9}(\boldsymbol{\operatorname { m o d }} 280)$.
Also for $k=5$, we have $5 .(7.5-1)=5 .(35-1)=5.34=170=10.17$
So, the two solutions are $x \equiv \pm(14.5-1) \equiv \pm 69 \equiv 69,211(\bmod 280)$.
Also for $k=7$, we have $7 .(7.7+1)=7 .(49+1)=7.50=350=10.35$
So, the two solutions are $x \equiv \pm(14.7+1) \equiv \pm 99 \equiv \mathbf{9 9 , 1 8 1}(\boldsymbol{\operatorname { m o d }} 280)$.
Also for $k=8$, we have $8 .(7.8-1)=8$. $(56-1)=8.55=440=10.44$
So, the two solutions are $x \equiv \pm(14 .-1) \equiv \pm 111 \equiv 111,169(\bmod 280)$.
Thus all the sixteen solutions are: $x \equiv 1,279,139,141,29,251,41,239,71,209,69,211,99,181,111,169(\bmod 280)$.

5. CONCLUSION

Thus a simpler, less time-consuming new method of finding solutions (directly) of a solvable quadratic congruence of the even composite modulus of the type:

$$
x^{2} \equiv a(\bmod 8 p q)
$$

with p, q are different odd primes, is developed.
The solutions are given by $x \equiv 8 p q \pm b ; 4 p q \pm b ; \pm(2 p k \pm b)(\bmod 8 \mathrm{pq})$, if $\mathrm{k} .(\mathrm{pk} \pm b)=2 q t$, for some positive integer t .

6. MERIT OF THE PAPER

It is seen that correct solutions are obtained by using the established formula in a less effort and in a short time. No need to use the Chinese Remainder Theorem. This is the merit of this paper.

7. REFERENCES

[1] Niven I., Zuckerman H. S., Montgomery H. L. (1960, Reprint 2008), "An Introduction to the Theory of Numbers", 5/e, Wiley India (Pvt) Ltd.
[2] Koshy Thomas, Elementary Number Theory with Applications, 2/e, 2007, Academic Press.
[3] ROY B. M., Discrete Mathematics \& Number Theory, First edition, 2016, Das Ganu Prakashan, Nagpur(INDIA).

