Pednekar Ashutosh Mahesh; International Journal of Advance Research, Ideas and Innovations in Technology

/A= | INTERNATIONAL JOURNAL OF

7 \™\v| Abvance ResearcH, IpEas Anp
IBARIIT] INnnovaTioNs IN TECHNOLOGY

ISSN: 2454-132X

Impact factor: 4.295
(Volume 4, Issue 4)
Available online at: www.ijariit.com

Improved random-forest image classification using generative

adversarial network

Ashutosh Mahesh Pednekar
ashutoshpednekarl5@gmail.com
Vellore Institute of Technology, Vellore, Tamil Nadu

ABSTRACT

Mankind has always hoped to do better. Ensemble learning [12] is one of the techniques that help drastically improve results
of machine learning algorithms. But these classifiers need a lot of data in order to perform really well. But even in today’s
data-driven world, it is not that easy to get hold of that magnitude of data. This is where the concept of synthetic data [2] comes
into play. Synthetic data is not real but boasts many characteristics of real data, and the latter can sometimes become
indistinguishable from the former. This data can be put to good use, such as training our ensemble classifiers so that we can
get even better results. That is what this paper aims to illustrate. I’'m using random-forest ensemble classifier for classifying
MNIST handwritten digits dataset, and the Generative Adversarial Network (GAN) for generating the said synthetic data.

Keywords: An ensemble, Generative adversarial networks, Mnist, Random-forest classifier

1. INTRODUCTION

This paper tries to illustrate the usage of synthetically generated data as training data for an ensemble classifier. The practice of
using several classifiers together, to improve the accuracy of the results is quite popular. But the results would be even better if it
was trained on more data. Of course, it is possible to get real data from the environment, or through surveys. But this data is still
limited. Wouldn’t it be wonderful, if we could just synthesize training data on the fly? This would literally make the training data
unlimited. But we can’t just put in random values that will ruin our classifier, as it would then be trained over inaccurate data thus
giving inaccurate results. That is clearly not acceptable. A better approach would be if we could somehow figure out a way to
create data that is similar, or better yet, indistinguishable from out real data. This was only theoretical in earlier days, but it is
definitely possible with today’s technology.

Nowadays, with the advent of neural networks, and the fact that we now have the computational resources to handle these heavy
calculations, we can now think of more innovative and intelligent ways to generate synthetic data. The model I’m using in the
context of this paper is the “Generative Adversarial Network”, short for GAN. The primary application of GAN is to generate
synthetic facial images. Ledig, Christian, et al 3] have used this network to generate Photo-Realistic Single Image Super-
Resolution. The working principle of GAN and random forest are illustrated in the following sections. The main idea behind this
paper is to propose and illustrate the use of generative models to synthesize more training data to feed our random forest classifier
so that it trains better and gives more accurate results.

2. ARCHITECTURE OVERVIEW

This section explains the architecture and the functioning of the proposed system. The following sections each illustrate the two
components of the said system. Following those, is the high-level abstract architecture of the entire system combined together. So
let’s take a quick look at the working principle of the random forest classifier.

2.1 Random-Forest Classifier
The working of the random forest classifier is explained in detail, in a further section. The following figure shows the basic
working of the said classifier.

The detailed explanation of how the Random-Forest classifier works is given in a further section of this paper. Now let’s look at
the cream, the generative adversarial networks, and understand what goes on inside it, and how good is it.

© 2018, www.IJARIIT.com All Rights Reserved Page | 63

file:///C:/omak/Downloads/www.IJARIIT.com
https://www.ijariit.com/?utm_source=pdf&utm_medium=edition&utm_campaign=OmAkSols&utm_term=V4I4-1165
mailto:ashutoshpednekar15@gmail.com

Pednekar Ashutosh Mahesh; International Journal of Advance Research, Ideas and Innovations in Technology

X

valing (in classification) or averaging {in regression)
i.
Fig. 1: Random forest classifier

2.2 GAN component

Irees *e® [reey
p.
o

Generative Adversarial Networks are a new type of Adversarial Networks, proposed by "lan Goodfellow" in 2014. It is usually
implemented using deep neural networks. GAN’s are very powerful, and efficient in generating "Realistic" outputs which can

seldom be distinguished from a "Real"” data sample.

The model is illustrated in the following figure:
Generative Adversarial
Network

Real
Samples

Latent
Space

g e Mo
L @.i G | :

Generated
Fake
s Samples

Generator

Noise

Fig. 2: Generative adversarial network

3. RANDOM-FOREST ALGORITHM OVERVIEW

IsD

Correct?

Fine Tune Training

One of the first machine learning algorithm in most our learning journey is the Decision Tree Classifier. It is one of the most
intuitive, straight-forward classification algorithm, introduced by Quinlan, J. Ross [5]. Unlike probabilistic classifiers like Naive-
Bayes, the Decision tree classifier uses the concept of entropy. The entropy of a feature or a column is given below.

E(S)= Z_p:' log, p;

i=l

Play Golf

Yes No

9 5

L

Entropy(PlayGolf) = Entropy (5,9)
= Entropy (0.36, 0.64)
= - (0.36 log, 0.36) - (0.54 log, 0.64)
=0.94

Fig. 3: Entropy calculation

© 2018, www.IJARIIT.com All Rights Reserved

Page | 64

file:///C:/omak/Downloads/www.IJARIIT.com

Pednekar Ashutosh Mahesh; International Journal of Advance Research, Ideas and Innovations in Technology
First, we calculate the entropy of the class and store it somewhere handy. Then we go ahead and calculate the entropies of all
other features. Now, we calculate the ‘Gain’, i.e, the absolute difference between the class entropy, and the entropy of each
feature. The feature with the maximum entropy is considered our root node. Then the dataset is partitioned according to the
different values of the root node. And that is followed by recursive execution of a similar procedure for these partitions. What we
finally get is a huge Decision tree. It is very useful to help make quick decisions, and to classify data conveniently. But sometimes
this may lead to “overfitting”, i.e, giving accurate results only for the training data, but bizarre results for the test data. This can be
avoided by pruning the tree or setting a maximum depth beforehand. But this was still not good enough. Thus came the
introduction of Random Forest[6] classifier, which takes an average of the results, in case of regression, and voting in case of
classification, the results of many decision trees in an ensemble, thus giving much better results. A forest of trees is impenetrable
as far as simple interpretations of its mechanism go. In some applications, analysis of medical experiments, for example, it is
critical to understand the interaction of variables that is providing the predictive accuracy. A start on this problem is made by
using internal out-of-bag estimates, and verification by reruns using only selected variables. This is the classification algorithm
being used in the context of this paper.

4. GENERATIVE ADVERSARIAL NETWORK OVERVIEW

D: Detective

:\1' .
Iﬁ '1}

R: Real Data G: Generator (Forger) I: Input for Generator

Goodfellow, lan, et al. proposed a novel approach for generating synthetic data, that is very similar to the real data. It consists of a
Generative model G, which captures the distribution of the data, and a Discriminative model D that computes the probability
estimate saying that a sample belongs to the training data rather than the generator G.

This can be thought of as follows. This explanation may sound a little informal, please bear with me. Consider a student in an
acting school and a newly appointed teacher. The student has to play the role of, say a politician. So the student starts his acting. It
is the job of the teacher to point out the flaws in his acting, and say whether the character is a real politician or just an actor. The
teacher and the student, both initially have very little intuition of how a politician acts. The teacher refers to a Biography of a
popular politician (i.i, Training Data) for reference. Say, after a few trials, the teacher figured out some salient feature that a
politician is supposed to possess, say confidence. The teacher will let the student know that this is what is expected in a real
politician, and the student will try his best to act in such a way that the teacher believes that he is a real politician. Now, the
teacher finds out that a politician must dress in a particular way. So the student will try to imitate that. They repeat these rounds
for hundreds, or maybe thousands of time until the student now seems indistinguishable from a real politician. Note that he is still
just an actor though, not a real politician.

Let us now rephrase this in more formal, computational terms. Our actor/student is played by a generator model G, while the role
of the teacher is played by the Discriminative model D. The better the model D is, at differentiating between real and fake data,
the better will the Generative model G will be at generating more realistic data, as it will be able to take better advantage of the
Discriminator’s new knowledge. The number of times the training takes place may be of the order of hundreds of thousands, or
even millions. The generator uses gradient descent, and the discriminator learns using the gradient ascent to converge.

They are created from two primary modules. a generator, and a discriminator. The Generative part is trying to create some sample
and deceive the discriminator to declare it as a "Real" data sample. Mathematically they can be represented like this:

min max V (D, G) = E x~p data (x) [log D(X)] + E z~p z (z) [log(1 — D(G(z)))]

In the proposed adversarial nets framework, the generative model is pitted against an adversary: a discriminative model that learns
to determine whether a sample is from the model distribution or the data distribution. The generative model can be thought of as
analogous to a team of counterfeiters, trying to produce fake currency and use it without detection, while the discriminative model
is analogous to the police, trying to detect the counterfeit currency. Competition in this game drives both teams to improve their
methods until the counterfeits are indistinguishable from the genuine articles.

5. IMPLEMENTATION

The task is to create a Generative adversarial network that will generate MNIST digits that seem to be indistinguishable from the
original MNIST dataset. These new data are augmented to the original training dataset. Now, we train the Random-Forest
classifier and classify the MNIST dataset.

© 2018, www.IJARIIT.com All Rights Reserved Page | 65

file:///C:/omak/Downloads/www.IJARIIT.com

Pednekar Ashutosh Mahesh; International Journal of Advance Research, Ideas and Innovations in Technology
Real MNIST training images
A generator network that takes in a random noise vector and produces a synthetic image
A discriminator network (a Convolutional Neural Network) that learns to discriminate between real and synthetic images. It
can be thought of as a binary classifier (1 for real image, 0 for fake)
An optimization procedure that jointly updates both the neural nets by means of SGD. This is the crucial part because we
need to train the generator network to deceive the discriminator network, which in turn means that we have unique gradient
flows and labels.
Tensorflow - Our choice of Deep Learning framework
Python, along with its basic libraries like numpy, pandas, matplotlib, etc.

Loading the MNIST dataset from sci-kit-learn:

For visualization
Here, we load only the first two features from the datasets, as it is not feasible to visualize data in higher dimensions. So here
is the code cell illustrating the same.

In L) Smatplotlit inline

In 21 print(__dgoc_)

[

import matplotlib. pyplot as plt

from mpl toolkits . mplotdd iopoct AxeslD
from sklearn ifsport datasets

from sklearn.deconposition import PCA

digits = datasets.load digits()
X = digita.datals, 221 «#
Y = digits.target

x min, x max = X{:,].minl) - $, Xz, Joman() +

ymin, ymax = Xfz, tl.minl) - 5, X[:, 1]l.mox() +

plt . Tigure(2, figsize=(u, 4))

plt.clf()

plt.scatterixi:, 0, Xl:, 1], c=y, cmop=plt.cm. Setl,
edgecolor="k')

plt . xlabel(Sepal leogth')

plt.ylabell Sepal width')

plt xlimix min, x max)
plt.ylimly min, y max)
plt. xticks(())
pli.ytickst())

» P ’ thr CA o4 on
fig plt.figurel{l, figsize=(B, a))

ax Axes3D(fig, eleve-156, azims«110)

X reduced = PCAIn companentss3) . Tit transfors(digits. data)

ax,.scatteri{X reduced[:. 0}, X reduced{;:. 1), X reduced(:, 2], c=y,
cmapsplt.cm.Setl, edgecolors« k', 6 se«in)

ax.set title("First thres PCA directions®)

nx.net xlabel(13t eigenvector”)

Ax.w xax1s.set ticklabels{ll)

ax.set ylabel{"2nd sigenv t)

ectar
nx.w _yaxin.set ticklsbels(i]l)
ax.aet rlabel("3rd eigenvector”)
Aax.w zaxis.set ticklabels([])

plr.ashowt)

In the above-illustrated code, I've also carried out ‘Principal Component Analysis’ (PCA), more specifically Eigenvector
decomposition so that we can have a better insight into how the data-points are separated.

First three PCA directions

SogE wi

© 2018, www.l1JARIIT.com All Rights Reserved Page | 66

file:///C:/omak/Downloads/www.IJARIIT.com

Pednekar Ashutosh Mahesh; International Journal of Advance Research, Ideas and Innovations in Technology
e For actual implementation

Unlike before, where we were using only two features from the dataset for visualization purposes, here we are loading the entire
dataset.
In [13]: from sklearn import datasets
diglits = datasets.load diglits{)
X = digits.data

y = digits.target
plt.scatter(Xf:, 8], X[:. 1], cey, sa58, cnaps'rainbow');

Function for creating an individual decision tree:

1163 from sklearn.tree Lmport DecisionTreeClassifier
clf = DecistonTreeClassifler()
But running this function for multiple iterations over different test data, we get completely different results. That’s a clear sign of
over-fitting. This needs to be avoided. Pre-pruning and Post-pruning are effective ways, but we can obtain way better results if we
go for ensemble methods - Enter Random forest!

Function for creating this ensemble of classifiers:
In [116]: def fit randomized tree(X, y, random state=8):
clf = DecisionTreeClassifier(max_depth=15)

rng = np.random.RandomState(random state)
i = np.arange(len(y))
rng.shuffle(i)
Here, what we are doing is basically creating decision trees for random subsets of data from out train sample. Once we fit these
decision trees on our data, all that is to be done is to essentially average out their results. This ensures a much better fit, overall.
Fit the Random Forest Classifier

Fit the modsd on the trun set

In (199 ¢lf = RandomForestClassifier(max depth=5, n estimators=10, max features=1)
clf . fit{X train, y train)

RandonForestClassifler(bootstrapeTrue, class welghteNone, criterione’ginl
nax depth=5, max features~l, max leaf nodes=None,
nin iepurity decrease<0.8, ain impurity split-None,
nin samsples leaf=1, min samples split=2,
uin welght fraction leaf«B8.0, n estimators=18, n jobsel
oob score=False, random stateskone, verbosesd,
warm start-False)

Run mference on the teat gala

in [200]: score clf.scorelX test, y tast
score

0.95%

In order to ensure proper results, and to avoid averaging error, I’ve used the predefined function from sci-kit-learn instead of using
my own function to fit the data. So, as we can clearly see, the score obtained is 0.95

Now is the time for the cream on the cookie! According to Yann LeCun, “adversarial training is the coolest thing since sliced
bread”. I’m inclined to believe so because I don’t think sliced bread ever created this much buzz and excitement within the deep
learning community. Hence, I tried deploying Generative adversarial networks on the MNIST data. I’'m using the TensorFlow
library from Google. Also please note; for saving time and for faster results, I’ve used Google Colab instead of my local
installation of sensor flow and jupyter notebook...

Importing the necessary libraries: -

(1] Lleport tensorflow as tf

1epOrt randow

Irport nurpy 43 np

Leport matplotiib, pyplot as pit

watplotlib Intine
Loading Data:

[2] from tensorflow.examples. tutorials. anist Ilmport input data
anist « input data,read data sets|"MNIST data/")

© 2018, www.IJARIIT.com All Rights Reserved Page | 67

file:///C:/omak/Downloads/www.IJARIIT.com

Pednekar Ashutosh Mahesh; International Journal of Advance Research, Ideas and Innovations in Technology

Plotting sample data, i.e. MNIST image:

[3] x_train = mnist.tradn, tnages| 55808,)
x_train, shape

[(5508D, T84)

Let's look at what a random image might look Me

{4] randoaNum = randon, randint (0, 55000)
inage = x train|randomhum) . reshape([20,20])
plt. imshow(inage, cmap=pit get cmap{ groy r'))
plt.show()

=) "

w

. L) w 1) & P

Functions for creating CNN’s in tensorflow:

{5] def convddix, W);
return tf.nn, convad(inputex, filtersw, stridess{1, i, 1, 1], paddings'SaMe’)

def avy ponl 2x2(x)1
return tf.ne.avg poolix, kslze=|l, 2, 2, 1], strides={1, 2, 2, 1], pacding='SaME')

Function for defining the Discriminator network:

[6] det discriminator(x image, reusesfalse)!

with tf.variable scopel 'discriminator') as scope;

it {reuse):
tf.get_variable scope(),reuse variablesi|

#FLrst Cony and Pool Layers
N_conyl = tf,get varlsble('d weonyl', [5
b convl = tf get varisble('d beonvl’, (ui lnlunluentf constant initializer(i}}
h convl « tf.pn, relulconvld{x image, W convl) = b conyl)
h pooll = avg pool 2x2(h convl)

#Second Conv anvl Poul Layers

W cony2 = tf get varlable('d weonv2', 15, 3, 6, 18], Inltializer=tr. truncated normel Laltializer(stddev=0,.02))

b conv2 = t1,get variable('d beonv2', [16], Initlalizerstf. constant Initializer(i))
h conv2 = tf . na, relulconv2dih pooll, W comv2) = b conyl)
h pool? « avg pool 2x2(h convd)

#First Faully Connected Layer

W fcl = tf.get varlable{'o wfcl', [7 * 7 * 16, 32), initlalizer=tf truncated normal initlalizer{stadevsd 2]}

b fel = tf get variable('d nfel', [32), initializerstf. constant initializerifi))
h pool2 flat = tr, reshape(h poou [-1, 7*7*16])
h fel < tfonn.relultf.mateulih poot2 flat, W fel) « b fei)

#Sacond Fully Cannected Layer
W fc2 = tf got variablel'd wic2', [32, 1], initializer=tf. truncated normal initializer(stddoved 02))
b tc2 = tf.get variablel's bfe2’, (1], initializer=tf. constant initializer(n))

#Final Layer
y_conve{tf matmul(h fcl, ¥ fc2) + b fe2)
return y _cony

Function for creating the Generator Network:

IT] S0t goeratectn, Match size, 7 din. ressafalosl
with tF.wariable stoped geaaiater’] a5 stoge
f trehe);
.0t vartabile scmpe)) resse vartatdas!)

L2 o 0 fRuater af filtars oF Fired lapee 3t geeecutes

Cdin = 1 Kolor tumersion f setpnr |INT51 A, W C v) r s

oo 30 NIt dlaw of D e

ST 00, A0 e bt{a/T), LeRC), dntia/ih, Setin/i6) B wert 10 slinly ipriale the sampr, oe these valier will ety

Sbs I chans gramsal

. tl.unrl:‘ Ibatan sioo, Slé-4, §34el, 2510
e

rt feCaw Layer
salpetl sham » lbutch dits, a8, 32, g Guevd]
Wcoen] w t1 get variblel § weawl l' L s\T{ 1. it got “QNIIwH!
PUTHITTS lvuum rersal lrializec]suddives. 1)
b coeal o t1 9ot varisklel 3 boawl’, [zstpey stapel-1l1. tratialiperet® camstast doctislisert 1))
coeel w U W0, COnADE tracspode 0, M Covl, GUEINT ENgEsNA ML g, stridees]l, 2, 2 11, paddinge S)
§ coeal & tf cavtres Jupers Batch rurmlinguty « ¥ coral, caviereTraw, sealeeTrie, 1o traisingeTrie, scopes’y bed'|
® coeal « tf, 00, relal¥ corwd}
lrwnilodt o N cawl's Rardh bhis 4 20 20

Vo Love A
m;qn uu thatch wizw, od - 1, b - |, g @07
W Coeed w11, g0t sarlabled g wow IS, 5, waperd wr(U, At cowl g Mm i
cxitialiserett troecated Sltzalizerstddend 1
B ocoeeld » £ get waciablel g bowd | loetpecd shapel-S11, Latialisersts, clmm mtulum i
® zxead o U6, ConndE Lranmaine i tawl, NEand, ANl WAGestpell Uuge, Atrifam]i, I, 2 e O)
W cxead = t1.OMTID, Tipery BNICH FAMLINMEN = B COPMD, COTLRCaTrun, SCaiewTrve, 13 LrasningsTrie, Scapes’q bed'|
cita2 » tfan relul conudi

ieas of Moot o takoh ke 0 A R B UGS

ird Delew Layer
nml? shape = Ihateh i, 22 L &2 y)
W cteed o thoget variable) g e, |3, 3, wapats --Tn -1, LN covir et naml i
xltializerstt trincsted oeems) saltsalizer(stadenss 1))
£ coead « (1 gat wariablel 3 beand, Jowtpend dhaoe| , LUtieliserety canstant mu‘luul 0l
oprdd o 1w candd tranponelN tnl o _oww), m;n ;\e«-w 1) stege. Atritese{l, 20 1, peddinge S8
® coeed o 1T CNIr, Taphrs, SaToN Permlinguls « B Coexd, CMTersTren, sGalestne, I lrnluyhu SCapemy Lel’|
coedd o tf 0y, nulb corn)
Whlnaniiogs of H Oend « tarzh ALow & U0 & L2« M
SRt betoes Laanr
satpets shigw « [Rateh side, 4, 4, € din)
W coesd o tY et wariablel g wcavid | IS, 5, autpeté g - 11, 108IH covyd get_ m«m i
Saltialiaerett trincated rermal caltializer |stidees. 1))
b coeed o tf et nariakle) g boavd ', lostpand xhapel 11 initialacerst? cowstant anstislireri, 1)}
00063 = 1100, CONAIE 1 aua0ne (N D, M Cwd, OGEIT ENPE=NtpITY WNpe, SLOLGuNTL 3, 2, 13, peddlags eIl)
® cowpd ot mn tann N corwd}
SInenzions of Mot s bt sie s M s M v)

Ty N oorad

© 2018, www.l1JARIIT.com All Rights Reserved

L, 0], Initistizer=tr. truncated normel initializer{stadev=0.02)|

Page | 68

file:///C:/omak/Downloads/www.IJARIIT.com

Pednekar Ashutosh Mahesh; International Journal of Advance Research, Ideas and Innovations in Technology
Generating a sample image:

[9] sample image = generator(z_test placeholder, 1, z_dimensions)
test z = np.random.normal(-1, 1, [1,z dimensions])

[11] my i = temp.squeeze()
plt.imshow(my_i, cmap='gray r')
plt.show()

a 5 hy] 15 2N sl

Preparation for training:

[12] batch size = 16
tf.reset_default _graph() #Since we changed our batch size (from 1 to 16), we need to reset our Ten

sess = tf.Session() :
x_placeholder = tf.placeholder("float", shape = [None,28,28,1]) #Placeholder for! input images to t
z_placeholder = tf.placeholder(tf.float32, [None, z dimensions]) #Placeholder for input noise vect

[13] Dx = discriminator(x placeholder) #Dx will hold discriminator outputs (unnormalized) for the real
Gz = generator(z_placeholder, batch size, z dimensions) #Gz holds the generated images
Dg = discriminator{Gz, reuse=True) #Dg will hold discriminator outputs (unnormalized) for generate

g loss = tf.reduce mean(tf.nn.sigmoid cross _entropy with_logits({logits=Dg, labelE=tf.0ne5_like(Dg)

Training the GAN:
- iterations = 3000

for i in range(iterations):
z_batch = np.random.normal(-1, 1, size=[batch size, z dimensions])
real image batch = mnist.train.next batch(batch size)
real image batch = np.reshape(real image batch[@],[batch size,28,28,1]) !

,dLoss = sess.run([trainerD, d loss],feed dict= {z placeholder z batch X placeholder real imag

_,gLoss sess.run([trainerG,g loss], feed dict={z placeholder:z batch}) #Update the generator

Looking at a sample image:

[19] sample image = generator(z_placeholder, 1, z dimensions, reuse=True)
z_batch = np.random.normal(-1, 1, size=[1, z_dimensions])
temp = (sess.run(sample image, feed dict={z placeholder: z batch}})
my 1 = temp.squeeze()
plt.imshow(my i, cmap="gray r')

> <matplotlib.image.AxesImage at 0x7f87686T0790> pLt.imshow(my 1, cmap='gray r')

T T
|...-.I . «<matplotlib.image.AxesImage a
0

5

- Al R : Jh
=E =ik .
R . .

. T .

I---IJ- T

5 10 15 2N

&}

As seen in the above figure, the generated image is now starting to obtain the features of the digit 8 in an MNIST dataset. The one
on the right resembles 4. Of course, these images are not yet ready to be augmented to the dataset. But running this entire training
process with the right hyper parameter tuning would definitely produce more convincing results.

© 2018, www.l1JARIIT.com All Rights Reserved Page | 69

file:///C:/omak/Downloads/www.IJARIIT.com

Pednekar Ashutosh Mahesh; International Journal of Advance Research, Ideas and Innovations in Technology
| tried augmenting the dataset to my existing dataset anyway, and the results were significantly increased.

RardosForestClassiflor

° X, yemahe soomsinoises0 05, tandom statesl)
X = Standardscaler().fit transformiX)
X train, X test, y train, y test = traim tost split(X, y, test sizee. 4, randem stateed2)

tLf « RandosforestClassifierinas depthed, n sstisatorsalt, mx featurers!|
clf . fat(X train, y train)

$Corw = clf score{X test, y test
\eurw

5 6.973

The score after augmenting GAN generated data is 0.975

6. OBSERVATION

Clearly, it can be observed that augmenting GAN generated synthetic data to the training dataset significantly increases the
accuracy score. In my case, it was increased by 2.6%; Also it is worth noting that the synthetic generated in my experiments were
not that convincing to the human eye. Still, | got a 2.6% rise in accuracy. This can be further improved by using proper
hyperparameter tuning, and pre-processed data to obtain even better results. These observations are certainly very reassuring.

7. CONCLUSION

The unavailability of large datasets for classification purposes can be compensated by augmenting synthetic data. This can be
achieved through generative models like ‘generative adversarial networks’. The tradeoff here is between the extra computational
overhead of the generative model versus the effort and resources needed for data collection. The results obtained in this paper
definitely illustrate the great potential of adversarial networks and augmented datasets.

8. REFERENCES

[1] Liaw, Andy, and Matthew Wiener. "Classification and regression by randomForest.” R News 2.3 (2002): 18-22.

[2] SUE, LEURGANS. "Linear models, random censoring and synthetic data." Biometrika 74.2 (1987): 301-309.

[3] Ledig, Christian, et al. "Photo-realistic single image super-resolution using a generative adversarial network." arXiv preprint
(2016).

[4] Friedl, Mark A., and Carla E. Brodley. "Decision tree classification of land cover from remotely sensed data." Remote sensing
of environment 61.3 (1997): 399-409.

[5] Quinlan, J. Ross. "Induction of decision trees." Machine learning 1.1 (1986): 81-106.

[6] Breiman, Leo. "Random forests." Machine learning 45.1 (2001): 5-32.

[7] Goodfellow, lan, et al. "Generative adversarial nets.” Advances in neural information processing systems. 2014.

[8] https://medium.com/@awijuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-
54deab2fce39 [ONLINE].

[9] Huang, Xun, et al. "Stacked generative adversarial networks.” IEEE Conference on Computer Vision and Pattern Recognition
(CVPR). Vol. 2. 2017.

[10] Arjovsky, Martin, and Léon Bottou. "Towards principled methods for training generative adversarial networks." arXiv
preprint arXiv:1701.04862 (2017).

[11] Strobl, Carolin, et al. "Bias in random forest variable importance measures: Illustrations, sources, and a solution." BMC
Bioinformatics 8.1 (2007): 25.

[12] Dietterich, Thomas G. "Ensemble methods in machine learning." International workshop on multiple classifier systems.
Springer, Berlin, Heidelberg, 2000.

[13]Wu, Zhaohua, and Norden E. Huang. "Ensemble empirical mode decomposition: a noise-assisted data analysis method."
Advances in adaptive data analysis 1.01 (2009): 1-41.

[14] Bol6n-Canedo, Verdnica, Noelia Sdnchez-Marofio, and Amparo Alonso-Betanzos. "A review of feature selection methods on
synthetic data." Knowledge and information systems 34.3 (2013): 483-519.

[15] Jaderberg, Max, et al. "Synthetic data and artificial neural networks for natural scene text recognition.” arXiv preprint
arXiv:1406.2227 (2014).

[16] Data Augmentation Generative Adversarial Networks Anthreas Antoniou, Amos Storkey, Harrison Edwards

[17] Scikit-learn and Tensorflow documentation for a code reference.

© 2018, www.IJARIIT.com All Rights Reserved Page | 70

file:///C:/omak/Downloads/www.IJARIIT.com

