ABSTRACT

A fixture is the most effective tool used to maintain the tolerance and precision in manufacturing industries. This project revolves around the development of fixture to manufacture the chassis of asphalt paver vehicle from L&T construction equipment ltd. The design of the fixture is optimized to provide the company to build the chassis more effective and precise with the knowledge acquired during the literature survey. The fixture is set up on the dowel-pin platform. The project will give an overall development of a fixture from the design process till the scaled prototype going under multiple iterations of analysis through Finite Element Analysis Method. The parameter or the constraints in the design are studied thoroughly such that no failure of the fixture occurs during high volume manufacturing in the company. The end product will be designed considering parameter which could be affected by various shop floor activities. Also carried out tolerance stack-up analysis to find out whether the introduced precision tolerance at the component level is meeting the assembly level functional requirement. The material selected for fabricating the fixture is specified for frequent periodic usage and open environment. The final product will meet all the requirements for large volume manufacturing in L&T construction equipment ltd.

Keywords: Finite Element Analysis Method, Fixture design, Scaled Prototype.
fixtures were developed over the years in order to increase the production rate. But most of the work is related to their work and are not of generalised in nature which can be adopted to any kind of work. This work aims to generalize the fixture for all kinds of chassis welding. Based on this we aim to

- To design the fixture for floor grid of asphalt paver considering the basic design constrains.
- To statically design the fixtures design with a good factor of safety.
- To fabricate the fixture with good engineering practices.

Asphalt Paver

The asphalt is added from a dump truck or a material transfer unit into the paver's hopper. The conveyor then carries the asphalt from the hopper to the auger. The auger places a stockpile of material in front of the screed. The screed takes the stockpile of material and spreads it over the width of the road and provides initial compaction.

The paver should provide a smooth uniform surface behind the screed. In order to provide a smooth surface, a free-floating screed is used. It is towed at the end of a long arm which reduces the base topology effect on the final surface. The height of the screed is controlled by a number of factors including the attack angle of the screed, weight and vibration of the screed, the material head and the towing force. To conform to the elevation changes for the final grade of the road modern pavers use automatic screed controls, which generally control the screed's angle of attack from information gathered from a grade sensor. Additional controls are used to correct the slope, crown or super elevation of the finished pavement.

In order to provide a smooth surface, the paver should proceed at a constant speed and have a consistent stockpile of material in front of the screed. Increase in material stockpile or paver speed will cause the screed to rise resulting in more asphalt being placed therefore a thicker mat of asphalt and an uneven final surface. Alternatively, a decrease in material or a drop in speed will cause the screed to fall and the mat to be thinner.

The need for constant speed and material supply is one of the reasons for using a material transfer unit in combination with a paver. A material transfer unit allows for constant material feed to the paver without contact, providing a better end surface. When a dump truck is used to fill the hopper of the paver, it can make contact with the paver or cause it to change speed and affect the screed height.

Floor Grid

A vehicle frame is also known as chassis, it is the main supporting structure of the vehicle to which all other components are attached, comparable to the skeleton of an organism. It encloses the front part of the paver container, auger, and screed.

2. METHODOLOGY

A. Proposed Methodology

The organization will look for ways to continuously improve their process, production, and quality of output produced. This requires various techniques and tools to be utilized for reduction of cost and increase their productivity. Following are the variously proposed methodology followed for the work flow.

B. Conceptual Design

The given 2D diagram from the industry is studied and a 3D model of the given diagram is designed and using the designed 3D model of the center rib the fixture initial design concept is proposed and basic requirements for the design is studied and analyzed.

The fixture design consists of the following parts:

Bed: It is a supporting unit for the entire fixture

Clamping system: A clamping system is a fastening device used to hold or secure objects tightly together to prevent movement or separation through the application of inward pressure. There are many types of clamps available for many different purposes. Some are temporary, as used to position components while fixing them together, others are intended to be permanent.
3. ACKNOWLEDGEMENT
The authors acknowledge, to H C Nagaraj, Principal of Nitte Meenakshi Institute of Technology for providing the support and infrastructure to carry out our research. We would also like to acknowledge Mr. Chethan K S, Assistant Professor, Department of Mechanical Engineering, Nitte Meenakshi Institute of Technology for his valuable suggestions and support.

4. REFERENCES
[4] Djordje Vukelic & Uros Zuperl & Janko Hodolic “Complex system for fixture selection, modification, and design” Received: 31 October 2008 /Accepted: 9 March 2009 /Published online: 24 March 2009 # Springer-Verlag London Limited 2009