

ISSN: 2454-132X Impact factor: 4.295 (Volume 4, Issue 1)

Available online at www.ijariit.com

# Design of Heat Recovery System in a Sheet Rock Plant

Submitted by:

Abhishek Chaturvedi

Hari .K Chaturvedi (Co-Author)

Student, Engineering Practice Department Walter G. Booth School

McMaster University

Date: February, 2015

#### ABSTRCT

This report is about the design of heat recovery system in a sheet rock plant. A sheet rock is basically a gypsum board which is mainly used as finish for walls, ceilings in households and commercial buildings. According to the given problem, during summer months the city water supplies to the manufacturing plant at a higher temperature of 90° F but during other months the temperature of water supply as 45° F. The demand of water temperature is 85° F for the process so the city water is heated by natural gas burners when it's in a storage tank. During the final stage of sheet rock production heated air is used in a closed oven with sheet rock for the drying process. The air gets exhausted from aluminium stacks. This waste heat energy is being recovered it in the form of energy with the help of specially selected heat exchanger. The energy recovered will be minimising the need of natural gas burner which is to heat the city water receiving at a temperature of 45° F. This would reduce the need of natural gas to use as the main source of heating the city water for production of sheet rock. The heat recovery system would be compatible to work for 24 hr in a 6 days week frame till 8 months. The report will include the type of heat exchanger selected, pump for heat recovery and piping system with fittings and routing for heat recovery. This would also include the cost involved in the whole additional process as installation, operational and maintenance cost with a calculated payback period of time for investment.

# Nomenclature

| • | Density                       | ρ                |
|---|-------------------------------|------------------|
| • | Specific Heat of water        | $Cp_{w}$         |
| • | Specific Heat of flue gas     | Cpf              |
| • | Heat Energy (Flue gas)        | $q_{\rm f}$      |
| • | Heat Energy (Water)           | $q_{\rm w}$      |
| • | Effectiveness                 | E                |
| • | Mass flow rate (Flue gas)     | $m_{\rm f}$      |
| • | Mass flow rate (Water)        | $m_{\rm w}$      |
| • | Heat Capacity (Flue gas)      | $C_{\mathrm{F}}$ |
| • | Heat Capacity (Water)         | $C_{\rm w}$      |
| • | Capacity Ratio                | $C_{r}$          |
| • | Temperature Inlet (Flue gas)  | $T_{i}$          |
| • | Temperature Inlet (Water)     | ti               |
| • | Temperature Outlet (Flue gas) | To               |
| • | Temperature Outlet (Water)    | $t_{\rm o}$      |

| • | Log Mean Temperature Difference   | $\Delta T_{lm}$ |
|---|-----------------------------------|-----------------|
| • | Pressure                          | p               |
| • | Volume                            | V               |
| • | Length                            | L               |
| • | Diameter (Pipe)                   | D               |
| • | Area                              | A               |
| • | Flow rate                         | Q               |
| • | Velocity of Flow                  | V               |
| • | Overall Heat Transfer Coefficient | U               |

# Contents

| 1) | Introduction                      | .Page ( | 7)      |
|----|-----------------------------------|---------|---------|
| 2) | Benefits of Heat Recovery System. | .Page   | (8)     |
| 3) | Given Information.                | .Page ( | (9)     |
| 4) | Assumptions                       | .Page ( | (10)    |
| 5) | Heat Exchanger                    | .Page ( | [11)    |
|    | Selection.                        | .Page   | (12)    |
|    | • Size                            | .Page   | (13-16) |
|    | • Location.                       | .Page ( | (17)    |
|    | Design Layout                     | Page    | (18)    |
|    | Material of construction          | .Page   | (19)    |
| 6) | Pump requirement (if any)         | .Page   | (20-21) |
| 7) | Piping System.                    | .Page   | (22)    |
|    | Pipe fitting                      | .Page ( | (23)    |
|    | Dimensions for pipe fitting       | .Page   | (24)    |
|    | Material for pipe fitting         | .Page ( | (25)    |
|    | • Size                            | .Page   | (26)    |
|    | Routing                           | .Page   | (27)    |
|    | Construction Material for Pipe    | . Page  | (28)    |

| 8) Economic Calculation for Payback | Page (2 | 29)    |
|-------------------------------------|---------|--------|
| Without Heat Recovery               | Page (2 | 29)    |
| With Heat Recovery                  | Page (3 | 80)    |
| 9) Heat recovery Cost Calculation.  | Page (  | 31)    |
| • Installation F                    | Page (. | 31)    |
| OperationI                          | Page (  | 32)    |
| Maintenance                         | Page (3 | 52)    |
| 10) Payback period on investment    | Page (  | (33)   |
| 11) Conclusion.                     | Page (3 | 34)    |
| 12) Used Tables                     | Page (3 | 35-40) |
| 13) References                      | Page (4 | 1-42)  |

#### INTRODUCTION

A heat recovery is a mechanical process in which heat is recovered from different sources of a plant to gain the potential of enhancing the energy of the system. The heat recovery system starts from a specially constructed heating surface through rectangular ducts into a cross flow heat exchanger to gain the energy for heating purposes. This hot flue gas, when passed through large no. of tubes in the heat exchanger, will exchange a lot of energy to the crossed flowing water in the tubes. The flowing water is coming at a temperature of 45°F (7.22°C) from the city water supply lines provided by the district water supply unit. The water has headers at both the ends of a heat exchanger device and through pipes, in a half circular pattern, the water will flow to gain heat for the system. The efficiency of hot flue gas transferred into energy form is not 100% due to heat losses at certain junctions and duct fittings. The amount of heat left in the system is moved further towards the stack at a dimension of 34 feet and 50 feet from the ground level. To let the gas exhaust through the stacks at each cross-section, manual dampers are installed in both the stacks as well as heat recovery system inlet and out of the ducting arrangement which would open the surface free for the exhaust when the flue gas was allowed to pass through heat recovery system and mean time both stacks dampers are in closed condition so that total flue gas can be passed through heat recovery system.

As the medium is flue gas and low temperature water hence the heat exchanger has been selected – crossed flow Economiser heat exchanger system which consists tubing arrangement with both end water heaters. The inlet water of 45°F entered in the Economiser header and passed through tubes and return to the heat exchanger out let header and carried away heat energy from the passing cross flow flue gas of 230°F. Assuming the dew point of flue gas 140°F we have calculated the heating surface area of heat exchanger and 140oF flue gas exhausted out of the stack and the heat energy utilised during the process.

After the heat transfer to the water tubes, the water temperature rises from given city water temperature of 45°F (7.22°C) to a temperature of 62.4 °F (16.77°C). The heated water will travel through the MS C class piping of 100 NB length 295 feet towards the water holding tank. The water holding tank has two incoming water inlets. The first one is city water 45°F and another one is heated water of 62.4°F coming through the heat recovery process. This heated water contains an enormous amount of energy to partially fulfil the demand of heat provided by the natural gas burners. Natural gas would now be used partially as a major source of heating for the system of manufacturing a sheet rock in a plant. The total profit from this heat recovery system has been calculated with a consideration of working days 8 months, 6 working days in a week and 24 hours of working.

## **Benefits of Waste Heat Recovery**

Benefits of 'waste heat recovery' can be broadly classified into two categories:

#### **Direct Benefits**

Recovery of waste heat energy has a direct effect on the saving of natural gas which is being used to heat the process water from 45°F to 62.4 °F for 8 months resulting to decrease the operation cost of the process which is reflected in process costing.

#### **Indirect Benefits**

- a) **Reduction in pollution**: By installing heat recovery system the natural gas consumption has reduced which is directly polluting the atmospherere due to higher emission level ie reduced the pollution level.
- b) **Reduction in equipment sizes:** Waste heat recovery reduces the fuel consumption, which leads to reduction in natural gas consumption causing reduction in equipment sizes of all natural gas handling equipments like burners, storage of natural gas and piping etc.
- c) **Auxiliary energy consumption**: Reduction in equipment sizes attracts additional benefits in the form of a reduction in auxiliary energy consumption.

## **Information**

**Given:** The given information to design a project are:

- 1. City water Temperature during 8 months ( ${}^{0}F$ ):  $45{}^{0}F = 7.22{}^{0}C$
- 2. Availability of city water for summer (4 months)  $90^{0}\text{F} = 32.22^{0}\text{C}$
- 3. Process Water requirement: 85°F
- 4. Flow rate of City water: 70 GPM = 19093.9 Kg/Hr (1 GPM = 272.77 Kg/Hr)
- 5. City water line pressure (psig):  $55 \text{ psig} = 3.79 \text{ Kg/CM}^2$  (1 kg/cm<sup>2</sup>= 14.53 Psig)
- 6. Total Flow rate of Flue Gas through both Chimney (CFM): 2\*14000 = 28000 CFM = 16520 m<sup>3</sup>/hr (1 CFM= 0.59 M3/Hour)
- 7. ID of Chimney: 3.6 Ft
- 8. Temperature of Flue Gas at outlet of each stack (F):  $230^{\circ}\text{F} = 110^{\circ}\text{C}$
- 9. Height of 1<sup>st</sup> Chimney: 50 Ft (From ground surface)
- 10. Height of 2<sup>nd</sup> Chimney: 34 Ft (From ground surface)
- 11. Distance from water tank to drying oven: 300 Ft
- 12. Specific heat of water as per table A-6 (Incropera 6<sup>th</sup> edition) = 4184 J/Kg.k
- 13. Specific heat of Flue gas as per table = 1068 J/Kg.K (At  $110^{\circ}\text{C}$ )
- 14. Density of Flue gas as per table =  $0.94 \text{ Kg/m}^3$

#### **ASSUMPTIONS**

The values which are assumed based on the requirements of the heat recovery system project are:

- 1) Dew point temperature of Flue gas in each chimney:  $140^{0}$ F =  $(60^{0}$ C)
- 2) Assuming overall heat transfer coefficient as per table C-2
  - a. Flue Gas  $(U_f) = 45 \text{ W/m}^2 \cdot {}^{0}\text{C}$
  - b. Water  $(U_w) = 625 \text{ W/m}^2$ .  ${}^{0}\text{C}$
- 3) Assuming dimension's for flue gas in Heat Exchanger:

Tubes ID: 0.0050 m, Metal thickness: 1.5 mm; Pitch: 20 mm; Length: 12 m

- 4) Assuming width of Heat Exchanger: 4 m
- 5) Assumed GCV (Gross Calorific Value) of Natural Gas: 9600 Kcal/Kg
- 6) Assumed Rate of Natural Gas: CAD \$ 0.13/kg

## **Heat Exchanger**

Heat exchanger design is a multi-step, iterative process made up of the following steps:

- 1. First start with a selection of heat exchanger based on the given mediums i.e air, water, gas.
- 2. Design ways to connect the heat producing surface with the heat exchanger.
- 3. Calculating the log mean temperature difference between the mediums.
- 4. Assuming the overall heat transfer coefficient given for the mediums of flow in a heat exchanger.
- 5. Calculate the area of effectiveness for the incoming heat in the heat exchanger.
- 6. Calculating the heat transfer rate of incoming heat from the heating surfaces to the heat exchanger.
- 7. Calculating the mass flow rate of the heat.
- 8. Calculate the heat capacity ratio of different mediums for analysing the efficiency of the heat exchanger.
- 9. Calculating the effectiveness through NTU method.
- 10. Calculating the no. of tubes of the heat exchanger for the medium to pass through the heat exchanger.
- 11. Calculating the size and width of the heat exchanger.

#### **Heat Exchanger Selection**

Cross Flow Heat Exchanger: The economiser cross flow heat exchanger is the type of heat exchanger process which has been selected for designing the heat recovery system in a sheet rock plant. In this process, fluid as city water would flow through the tubes in a circular pattern from inlet header to outlet header and the heat energy coming from the drying oven as a flue gas would entered from the duct cross sectional area below and above the heat exchanger area in a cross flow pattern. The arrangement of heat exchanger would be one medium flowing in unmixed matter inside the tubes and another one is cross flowing in a mixed manner outside the tubes in the ducting cross sectional area.

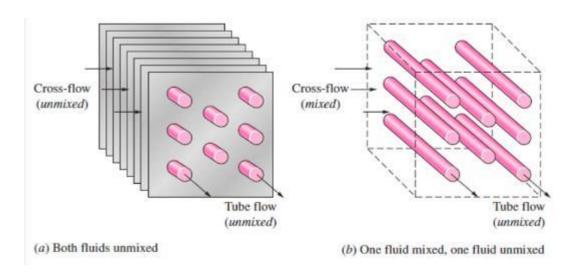


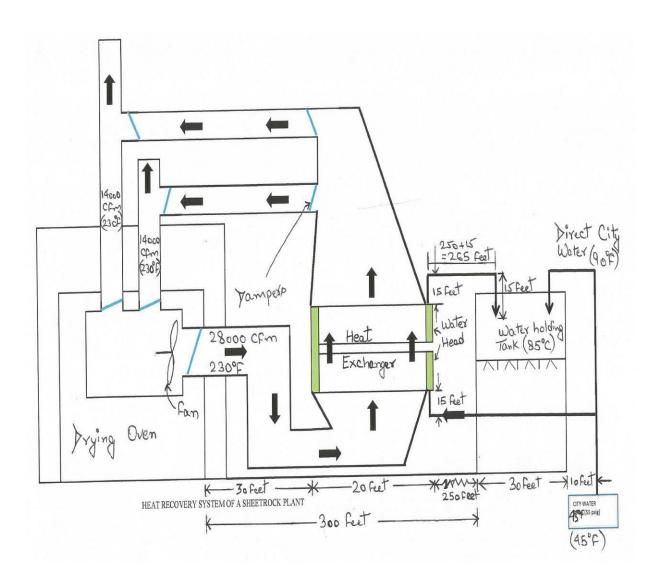

Fig-Cross Flow Heat Exchanger

# Size of Heat Exchanger

# The design of Heat Exchanger Calculations

| Heat Exchanger Calculations                              |            |          |
|----------------------------------------------------------|------------|----------|
| Description                                              | UOM        | Values   |
| Given                                                    |            |          |
| Water flow rate                                          | GPM        | 70       |
| Water flow rate in Kg/Hour (1GPM =272.77 Kg/Hour)        | Kg/hour    | 19093.9  |
| Temperature reqd to be heated up to                      | oF         | 85       |
|                                                          | oC         | 29.44    |
| Temperature of city water is being received for 8 months | oF         | 45       |
| Temperature of city water is being received for 8 months | oC         | 7.22     |
| Chimney flue gas flow of one chimney                     | CFM        | 14000    |
| Chimney flue gas flow of another chimney                 | CFM        | 14000    |
| Total Gas flow                                           | CFM        | 28000    |
| Gas flow ( 1CFM=0.59 M3/hour)                            | M3/hour    | 16520.00 |
| Chimney Temperature at outlet be( Ti)                    | oF         | 230      |
| Hence Temperature at outlet of flue gas will be ( Ti)    | ОС         | 110      |
| Assuming Due point temperature of flue gas (To)          | ОС         | 60       |
| Density of flue gas as per table                         | kg/m3      | 0.94     |
| Specific heat of flue gas as per table                   | kcal/Kg/oC | 0.255    |

| Useful heat energy from flue gas ( qf)                                   | Kcal/hour | m x CPf X(Ti-To) x ρ |
|--------------------------------------------------------------------------|-----------|----------------------|
| Useful heat energy from flue gas ( qf)                                   | Kcal/hour | 197992               |
| Heat energy Utilised from chimney flue gas (qf)                          | Kcal/hour | 197992               |
| Mass flow rate of water mCPw                                             | Kg/hour   | m x CPw              |
| (assumed specific heat of water =1Kcal/kg/oC)                            | Kg/hour   | 19093.9              |
| We know that heat energy from flue gas ( qf) = Heat energy of water (qw) |           |                      |
| hence qf=qw = mCPw x (to-ti)                                             |           |                      |
| ie qf = mCPw x ( to-ti)                                                  |           |                      |
| Hence Temperature rise of water (to-ti)                                  | oC        | qf/mCPw              |
| Hence Temperature rise of water (to-ti)                                  | oC        | 10.37                |
| We know that inlet temperature of water is - ti ( as given)              | oC        | 7.22                 |
| hence the out let temperature of water will be -to                       | оС        | 17.59                |
| Ti                                                                       | oC        | 110                  |
| to                                                                       | oC        | 17.59                |
| То                                                                       | oC        | 60                   |
| ti                                                                       | oC        | 7.22                 |
|                                                                          |           |                      |


| Mass flow rate of water as given (Mc)                                             |     | Kg/sec  | 5.30      |        |
|-----------------------------------------------------------------------------------|-----|---------|-----------|--------|
| Specific heat of water (CPw) as per table A-6                                     |     | J/kg/k  | 4184      |        |
| Heat capacity of cooling water Cc = Mc x CPc                                      | W/K | J/sec/K | 22191     |        |
| Mass flow rate of flue gas ( Mf)                                                  |     | Kg/Sec  | 4.31      |        |
| Specific heat of Flue gas as per table A -6                                       |     | J/kg/k  | 1068.00   |        |
| Heat Capacity of flue gas (Cf) = Mf x CPf                                         | W/K | J/sec/K | 4606.88   | Cf Max |
| Heat capacity of Flue gas Cf = Mfx CPf= Heat Capacity of Water Cc x (to-ti)/Ti-To |     | W/K     | 4601.23   | Cf min |
| We know that Heat Transfer q max = Cf min x (Ti-ti)                               |     | Watt    | 472904.44 |        |
| Actual heat transfer rate is q = Cc x (to-ti)                                     |     | Watt    | 230061.62 |        |
| We know that Effectiveness E = Heat transfer actual (q)/ Heat Transfer Max (qMax) |     |         | 0.49      |        |
| NTU = -Log ( 1- E(1+CR))/(1+CR) as per graph 11.14 ( INCROPERA 6 th edition)      |     |         | 1.00      |        |
| CR = Cmin/Cmax calculated                                                         |     |         | 1.00      |        |

| m2  | E64*E56/45                    |
|-----|-------------------------------|
| m2  | 102.25                        |
|     |                               |
|     |                               |
| Nos | E72/(3.14*0.005*12)           |
| Nos | 543                           |
| Nos | E75/2                         |
| Nos | 271                           |
| m   | E76*(0.0053+0.002)            |
| m   | 3.96                          |
| m   | 4                             |
|     |                               |
|     |                               |
|     |                               |
|     |                               |
|     |                               |
|     | Nos<br>Nos<br>Nos<br>Nos<br>m |

# **Location of Heat Exchanger**

| Location of Heat Exchanger -                                       |        |                 |
|--------------------------------------------------------------------|--------|-----------------|
| volume of chimney exhaust gast                                     | CFM    | 28000           |
| mass flow rate ( 1CFM =0.59 M3/Hour, 1 hour = 3600 Sec)            | m3/sec | E89*0.59/3600   |
|                                                                    | m3/sec | 4.589           |
| density                                                            | kg/m3  | 0.940           |
| mass flow rate                                                     | Kg/sec | E91/E92         |
|                                                                    | Kg/sec | 4.882           |
| ID of chimney                                                      | Ft     | 3.6             |
| Inside area of Chimney                                             | Ft2    | ∏*D2/4          |
|                                                                    | Ft2    | 10.17           |
| Velocity of gas flow V= Q/A                                        | FPM    | E89/2/E97       |
|                                                                    | FPM    | 1376            |
| Hence the velocity of gas flow will be                             | FPM    | 1376            |
|                                                                    | m/s    | E100/3.28/60    |
|                                                                    | m/s    | 6.99            |
| Duct sizing area for Economizer heat exchanger                     | Ft2    | Q/V             |
| Duct sizing area for Economizer heat exchanger                     | Ft2    | E89/E100        |
| 0                                                                  | Ft2    | 20.35           |
| Hence the size of duct would be                                    |        | 4.51x 4.51 feet |
| Hence the location of Heat Exchanger will be away from drying oven | Ft     | 30              |
| Length of Heat Exchanger is taken                                  | Ft     | 20              |
| Hence remaining distance from Heat exchanger to Water storage tank | Ft     | 250             |

# **Design Layout of the System**



#### **Construction Material**

The construction material used for the cross flow heat exchanger is Medium Carbon Steel. The Carbon steel is a steel alloy which consists of iron and carbon as the main constituent's material. Several other elements such as Manganese, Silicon, and Copper were allowed in carbon steel as low maximum percentages as follows: Manganese (1.65% max), Silicon (0.60% max), Copper (0.60% max). Other elements could be present in the steel in small quantities which won't affect the properties of carbon steel.

There are four types of carbon steel based on the amount of carbon in the alloy as follows:

- 1. **Low Carbon Steel:** Carbon content (0.05-0.25%), Manganese (0.4%) also known as mild steel. Its properties as-Low cost material, easy to shape.
- 2. **Medium Carbon Steel:** Carbon content (0.29-0.54%), Manganese (0.60-1.65%). Its properties as ductile and strong with good wear properties.
- 3. **High Carbon Steel:** Carbon content (0.55-0.95%), Manganese (0.30-0.90%). Its properties as strong and holds shape memory very well ideally for springs and wire.
- 4. **Very High Carbon Steel:** Carbon content (0.96-2.1%). Its high carbon content makes it the extremely strong material, brittle and requires special handling.

# Pump

| Pump Calculations                                           |                    |          |
|-------------------------------------------------------------|--------------------|----------|
|                                                             |                    |          |
| City water Pressure given                                   | psig               | 55       |
| Converted (1Kg/cm2=14.53 psig)                              | Kg/cm2             | 3.79     |
| Pressure drop across the Heat Exchanger                     |                    |          |
| e                                                           | mm                 | 0.000150 |
| L                                                           | m                  | 12       |
| D                                                           | m                  | 0.0050   |
| ρ                                                           | Kg/m3              | 999.70   |
| V                                                           | m/sec              | 1.2      |
| Diameter of Tube for Heat Exchanger (D)                     | m                  | 0.0050   |
| μ Viscosity                                                 | N sec/m2           | 0.00130  |
| Re=ρ x V x D /μ (For Turbulent flow)                        |                    | 4614     |
| F (Friction Factor)                                         |                    | 0.038    |
| F=1/SQRT(F) +2*LOG(e/(3.7*D) + 2.51/(Re*SQRT(F)))           |                    |          |
| Pressure drop across Heat Exchanger ΔP = ρx F x L /D X V2/2 | Kg/m/sec2 ( Pascal | 1.87     |
| Frictional loss across Heat Exchanger h= FX(L/D)xV2/2       | m2/sec2            | 66       |
| Head loss across heat exchanger = ΔP /ρ x g +h/g            | m                  | 7        |

| Total Suction Head = Net Positive suction head - Head Loss                                           | m                  | 375   |
|------------------------------------------------------------------------------------------------------|--------------------|-------|
| Frictional losses in Pipe line ( 200 Feet) h= FX(L/D)xV2/2                                           | m2/sec2            | 17    |
| Pressure drop across Suction pipe line ΔP = ρx F x L/D X V2/2                                        | Kg/m Sec2 ( Pascal | 16798 |
| Head Loss in suction pipe line ( 200 Feet) = ΔP/ρ x g+h/g                                            | m                  | 3.43  |
| Total Discharge head = Static Discharge lift + Discharge head loss + Head Loss across Heat Exchanger | m                  | 214   |
| Static Discharge lift                                                                                | m                  | 200   |
| Pressure Drop across Heat Exchanger                                                                  | m                  | 7     |
| Discharge head loss across pipe line                                                                 | m                  | 7     |
| Head Loss in Discharge pipe line ( 405 Feet) = ΔP /ρ x g +h/g                                        | m2/sec2            | 7     |
| Frictional losses in Pipe line h= FX(L/D+3Le/D)xV2/2                                                 | m2/sec2            | 35    |
| Pressure drop in discharge pipe line ( 405 Feet) ΔP = ρx F x L /D X V2/2                             | Kg/m/sec2 ( Pascal | 34017 |
| for positive suction Total Dynamic head = Total Discharge Head - Total Suction Head                  | m                  | -162  |
| Positive suction Head                                                                                | Kg/cm2             | -1.62 |
| Hence New pump is not required due to available pressure of City water                               |                    |       |

## **Piping System**

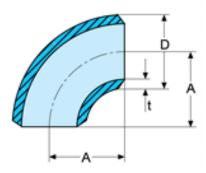
### **Pipe**

The pipe selected for the flow of city water to and from the heat exchanger is Mild Steel ERW pipes. These pipes are specially designed by galvanising iron (Hot Dip Galvanised) process to avoid any corrosion due to constant contact with water. These pipes are generally used by construction companies and power producing industries.

General Specifications of ERW pipes are:

- 1) Size Range- ½ inch to 6 inch NB
- 2) Thickness range- 6.35 12.7 mm
- 3) Class- A, B, C
- 4) Grade- 1239/I OR BS: 1387 CLASS A, B OR C
- 5) Ends- With Screw & Socket or Plain Ends

## **Pipe fittings**


In the heat recovery system, the type of pipe fitting selected is Butt-weld fitting. In particular, to  $90^{0 \text{ elbows}}$ , short radius butt-weld fitting for the flow of water through the heat exchanger. According to the requirement of pipe design, the pairs of butt-weld fitting would be selected in the pipes to flow the water through the heat exchanger into the water holding tank.

There are different forms of butt-weld fittings as:

- 1) Elbow 90<sup>0</sup>, long radius
- 2) Ball Valves
- 3) MS Flanges
- 4) Water Flow meter
- 5) Water inlet and outlet Headers
- 6) Nut and Bolts

# **Dimensions for Pipe Fitting**

The description for butt-weld pipe fitting selected according to the requirement are as follows:



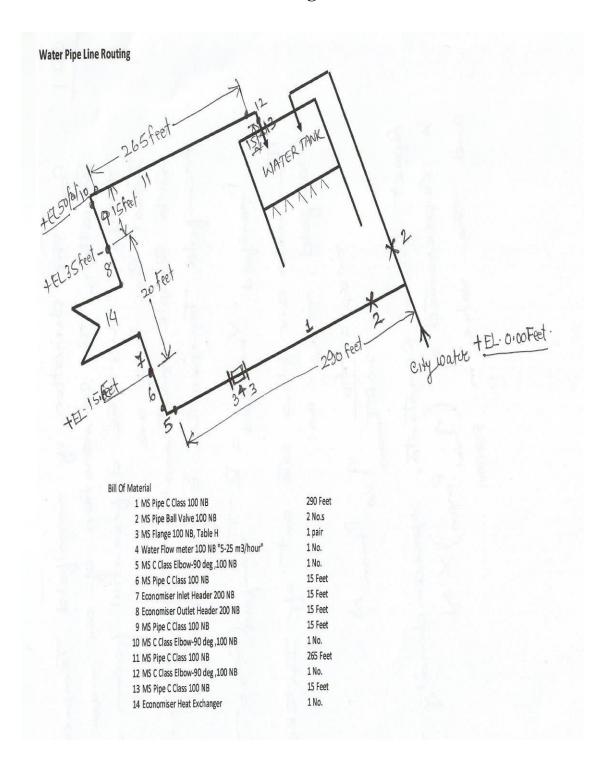
- 1) Nominal Pipe size: 4 inches
- 2) Category: 10 sch (schedules)
- 3) Diameter: 100 mm
- 4) Thickness: 3.05 mm
- 5) Area: 101.6 mm<sup>2</sup>
- 6) Weight (kg/pce): 1.720
- 7) Stainless Steel grade: ASTM A316/316L (Made from welded pipe or plate)

## **Material for Pipe Fitting**

The material selected for butt-weld fitting in the pipe is Austenitic Stainless Steel. This material consists of steel grade- ASTM316/316L which is made from welded pipe or plate.

There are two types of materials used for butt-weld fitting construction as:

- A. Austenitic Stainles Steel: Specifications a r e Stainless steel grades ASTM 304/304L and ASTM 316/316L (dual marked and certified) acc. To ASTM A / ASME SA403, IC acc. To ASTM A262E and PMI tested.
- B. **Duplex and Super Duplex Stainles Steel:** Specifications are Duplex grade UNS S31803 (EN 1.4462 / SAF 2205) and super-duplex grade UNS S32750 (EN 1.4410 / SAF 2507) acc. To ASTM A815, G48A for UNS S32750 and PMI tested.


# **Calculations for Pipe Sizing**

| Pipe sizing                                                 |         |          |
|-------------------------------------------------------------|---------|----------|
|                                                             |         |          |
| Water flow rate                                             | GPM     | 70       |
| Q                                                           | Kg/hour | 19093.9  |
| Q                                                           | m3/hour | 19.094   |
| Q                                                           | m3/sec  | 0.005    |
| Assuming water flow velocity                                | m/s     | 1.2      |
| Area required for water                                     | m2      | 0.00442  |
| We know that A = ∏/4 X D 2                                  |         |          |
| Hence D2 =4A /∏                                             | m2      | 0.005630 |
|                                                             | mm2     | 5630     |
| Calculated Diameter of Pipe will be for water transporation | mm      | 75       |
|                                                             |         |          |
| Hence the next size of pipe would be                        | mm      | 100      |

The diameter of pipe for water transportation is selected as 100 mm. This is because pipe size is calculated as 75 mm but in actual, pipe size is selected as in the range of  $1-1_{1/2}-1_{1/4}$  inches and 100 mm is relatively equal to 4 inches. It is always desired to take one size higher than the calculated values to minimise the pressure drop across the pipeline considering a reduction in

various losses.

# Routing



## **Construction Material for Pipe**

The construction material selected for the pipe is Mild Steel C Class. The material required for the complete piping system are as follows:

## Piping Material

| MS C Class Pipe Size 100 NB Length for inlet of heat exchanger  | Feet  | 305 |  |  |  |  |  |  |  |  |
|-----------------------------------------------------------------|-------|-----|--|--|--|--|--|--|--|--|
| MS C Class Pipe Size 100 NB Length for outlet of heat exchanger | Feet  | 295 |  |  |  |  |  |  |  |  |
| Hence total MS C class Pipe size 100 NB will be                 | Feet  | 600 |  |  |  |  |  |  |  |  |
| MS C Class Bends 45 <sup>0</sup>                                |       |     |  |  |  |  |  |  |  |  |
| Flow Meter Flange mounted Size 100 mm, Flow rate - 5-25         |       |     |  |  |  |  |  |  |  |  |
| M <sup>3</sup> /hour                                            | No    | 1   |  |  |  |  |  |  |  |  |
| MS C Class Flange Table F                                       | Pairs | 2   |  |  |  |  |  |  |  |  |
| MS Nut Bolt                                                     | M16   | 16  |  |  |  |  |  |  |  |  |

### **Economic Calculations**

#### **Input Data**

Natural Gas Rate: CAD \$ 0.13/KG

Flue gas Capacity (2 Chimneys): 435583 Kcal/hour (16520 x 0.255 x 0.94 x 110)

Heat Recovery Capacity (2 Chimneys): - 186346 Kcal/hour

Operating Hours: 4872 hours

#### **Cost of Heat Recovery Calculation**

## Case 1 - (Without Heat Recovery)

Heat Energy required to heat up city water 70 GPM from 45°F (7.22°C) to 85°F (29.42°C)

 $= m \times cp_w \times \rho \times (to-ti) \text{ Kcal/hour}$ 

 $= 70 \times 272.77 \times (29.44-7.22) = 424266 \text{ Kcal/hour}$ 

Assuming Net CV of Natural gas = 9600 Kcal/hour

Hence the Natural Gas consumption would be = 44.19 Kg/hour

Hence the Natural gas consumption for 8 months (4872 hours) == 215294 kg / 8 months

#### Case II - (With Heat Recovery)

Heat Energy required to heat up city water 70 GPM from 45 °F (7.22 °C) to 63.66 °F (17.59 °C)

=  $m \times cpw \times \rho \times (to-ti)$  Kcal/hour

 $= 70 \times 272.77 \times (17.59-7.22) = 197992 \text{ Kcal/hour}$ 

Assuming Net CV of Natural gas = 9600 Kcal/hour

Hence the Natural Gas consumption would be = 20.62 Kg/hour

N a tural gas consumption for 8 months (4872 Hours) == 100481 kg / 8 months

Net Saving in Natural Gas consumption (4872 Hours) == 100481 kg / 8 months

Hence the final natural gas consumption would be = 114813 Kg/8 months

Rate of natural gas == CAD \$ 0.13/KG

Hence net cost saving in 8 months =  $0.13 \times 100481 == CAD \$ 13063.00$ 

**Payback Summary** 

Annual Natural Gas Cost Savings CAD \$ 13063 /year

| Heat Recovery Calculations                                               |           |        |
|--------------------------------------------------------------------------|-----------|--------|
| Heat Energy utilised to convert water temperature from 45 oF to 63.66 oF | Kcal/hour | 197992 |
| Assumed GCV of Natural Gas                                               | Kcal/Kg   | 9600   |
| Natural Gas saving by heat recovery                                      | Kg/hour   | 20.62  |
| Time to be calculated ( 203 days x 24 Hours)                             | hours     | 4872   |
| Gas qty saving in 8 months                                               | Kg        | 100481 |
| Assumed Rate of Natual Gas                                               | CAD\$     | 0.13   |
| Cost saving of Natual gas for 8 months                                   | CAD\$     | 13063  |
| Installation cost                                                        |           |        |
| Cost of Heat Exchanger                                                   | CAD\$     | 12000  |
| Piping bends, Flanges and Flowmeter                                      | CAD\$     | 7200   |
| Ducting and dampers                                                      | CAD\$     | 12000  |
| Insulation of inlet ducting and heat exchanger                           | CAD\$     | 10000  |
| Total Cost                                                               | CAD\$     | 41200  |
| Contigency @5%                                                           | CAD\$     | 2060   |
| Total Project cost                                                       | CAD\$     | 43260  |

| Operation cost Control of the Contro |             |         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|
| N. J                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | V1/h        | 225247  |
| Natural Gas required to heat up water from 63.66 oF to 85 oF for 70 GPM water                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kcal/hour   | 226317  |
| Qty of Gas required to heat up water as above                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Kg/hour     | 25.86   |
| Qty of Gas required to heat up water as above ( 8 months)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Kg/Year     | 125990  |
| Operation cost of Natural gas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CAD \$/Year | 16379   |
| Man power Cost @ 15 CAD \$/hour                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CAD \$/Year | 73080   |
| Total operating cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CAD \$/Year | 89458.7 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |
| Maintenance Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             |         |
| Stores and spares for Heat Exchanger, Ducting ,Dampers and burners @ 2% Of project cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CAD \$/Year | 865.2   |
| Repair and Maint cost @ 3 % of project cost                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | CAD \$/Year | 1297.8  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |
| Total maintenance cost assumed @ 5 % of Project cost per year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CAD \$/Year | 2163    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |
| Grand Total - ( Project cost + operation cost + Maintenance Cost)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CAD \$/Year | 134882  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |         |
| Pay back period ( Project cost/ Annual saving )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Years       | 3.31    |

#### **Payback Period for Investment**

From the energy savings and implementation costs calculation, a simple payback period for the system design can be analysed. A simple payback calculates the number of years involved in the investment that would reduce the energy costs by the same amount as the initial cost of implementation.

The simple payback period follows as:

SP = IC / ES

= \$43,260/ \$13,063 per year

= 3.31 years

Where:

SP = Simple Payback Period

IC = Total Implementation Cost for the entire system

ES = Annual Energy Savings expected from the design

This system design is estimated to pay for itself in less than three years and 31 days. This simple payback is calculated based on the initial costs along with the estimated energy consumption reduction and it does not include any types of maintenance costs throughout the system life.

However, the system does not consist of many moving parts leading to the majority of the maintenance costs being associated with the cleaning of the heat exchangers. This maintenance is assumed to be minimal and should not impact the implementation of the system. However, certain maintenance interval estimations have been established and are discussed in previous Sections which can be used to provide a more accurate representation of the payback period.

#### Conclusion

- 1) The heat exchanger type selected is economiser cross flow heat exchanger as:
  - a. Size  $-6 \times 4 \text{ m}^2$
  - b. Length -20 feet (6 m)
  - c. Location -
    - I. Distance of Heat exchanger from drying oven- 30 feet
    - II. The distance of Heat exchanger from the water holding tank-
  - 250 feet d. Material Used Medium Carbon Steel
- Pump Not required as the pressure of water flow is adequate to maintain pressure drop in the water pipeline.
- 3) Piping System as:
  - I. Pipe Size (Nominal Diameter): 100 mm (4 inches)
  - II. Pipe Length from Junction of city water to the Heat exchanger Inlet header: 305 feet
  - III. Pipe Length from Heat Exchanger outlet header to the water holding tank: 295 feet
- 4) Material Used for pipe: Mild Steel C Class
- 5) Material Used for Pipe fitting: Austenitic Stainless Steel (ASTM A 316/316L)
- 6) Total Project Cost Involved: CAD \$ 43260.00
- 7) Payback period: 3.31 years

## **Used Tables**

Table C.2 Representative values of the overall heat transfer coefficients (SI)

| Type of Heat Exchanger                        | U (W/(m² °C))                  |
|-----------------------------------------------|--------------------------------|
| Water-to-water                                | 850-1700                       |
| Water-to-oil                                  | 100-350                        |
| Water-to-gasoline or kerosene                 | 300-1000                       |
| Feedwater heater                              | 1000-8500                      |
| Steam-to-light fuel oil                       | 200-400                        |
| Steam-to-heavy fuel oil                       | 50-200                         |
| Steam condenser                               | 1000-6000                      |
| Freon condenser (water cooled)                | 300-1000                       |
| Ammonia condenser (water cooled)              | 800-1400                       |
| Alcohol condenser (water cooled)              | 250-700                        |
| Gas-to-gas                                    | 10-40                          |
| Water-to-air in finned tubes (water in tubes) | 30-60 (air); 400-850 (water)   |
| Steam-to-air in finned tubes (steam in tubes) | 30-300 (air); 400-4000 (water) |

Source: Çengel, Y.A. (2007) Heat and Mass Transfer: A Practical Approach, 3rd edn, McGraw-Hill, Inc., New York.

| t     | ρ                    | Сp       | μ *10 <sup>6</sup> | v *10 <sup>6</sup>  |
|-------|----------------------|----------|--------------------|---------------------|
| [o c] | [kg/m <sup>3</sup> ] | [kJ/kgK] | [Pas]              | [m <sup>2</sup> /s] |
| 0     | 1.295                | 1.042    | 15.8               | 12.2                |
| 100   | 0.95                 | 1.068    | 20.4               | 21.54               |
| 200   | 0.748                | 1.097    | 24.5               | 32.8                |
| 300   | 0.617                | 1.122    | 28.2               | 45.81               |
| 400   | 0.525                | 1.151    | 31.7               | 60.38               |
| 500   | 0.457                | 1.185    | 34.8               | 76.3                |
| 600   | 0.405                | 1.214    | 37.9               | 93.61               |
| 700   | 0.363                | 1.239    | 40.7               | 112.1               |
| 800   | 0.33                 | 1.264    | 43.4               | 131.8               |
| 900   | 0.301                | 1.29     | 45.9               | 152.5               |
| 1000  | 0.275                | 1.306    | 48.4               | 174.3               |
| 1100  | 0.257                | 1.323    | 50.7               | 197.1               |
| 1200  | 0.24                 | 1.34     | 53                 | 221                 |

Fig: Flue Gas Property Table

## 894 | Thermodynamics

| TABI         | LE A-6               |                    |                  |                    |                   |            |                   |       |                        |                    |             |          |                    |
|--------------|----------------------|--------------------|------------------|--------------------|-------------------|------------|-------------------|-------|------------------------|--------------------|-------------|----------|--------------------|
| Superl       | neated               |                    |                  |                    |                   |            |                   | •     |                        |                    |             |          |                    |
| water        |                      |                    |                  |                    |                   |            |                   |       |                        |                    |             |          |                    |
| T            | V                    | и                  | h                | s                  | V                 |            | и                 | h     | S                      | V                  | и           | h        | S                  |
|              | 3.                   |                    |                  | kJ/k               | 3                 |            |                   |       |                        | 2                  |             |          | kJ/kg              |
| <u>°C</u>    | g m <sup>3</sup> /kg | kJ/kg              |                  |                    | m <sup>3</sup> /k |            | kJ/kg             |       | ı kJ/kg                | m <sup>3</sup> /kg | kJ/kg       | kJ/kg    |                    |
|              | $P_{-}0.01$          | MPa (45.8          | 31°C)*           |                    | $P_{-}0.05$       | MPa        | (81.32°           | C)    |                        | $P_{-}$            | 0.10 MPa    | a (99.61 | °C)                |
| Sat.†        | 14.670               | 2437.2             | 2583.9           | 8.1488             | 3                 | .2403      | 3 2483            | .2 26 | 645.2                  | 1.6941             | 2505.6      | 2675.0   | 7.3589             |
| 50           | 14.867               | 2443.3             | 2592.0           |                    |                   |            | 7.593             | 31    |                        |                    |             |          |                    |
| 100          | 17.196               | 2515.5             | 2687.5           |                    | 2                 | 440-       | 7 0544            | - o   | 200.4                  | 1.6959             |             |          | 7.3611             |
| 150<br>200   | 19.513<br>21.826     | 2587.9<br>2661.4   | 2783.0<br>2879.6 |                    | 3                 | .4187      | 7 2511<br>7.695   |       | 82.4                   | 1.9367<br>2.1724   |             |          | 7.6148<br>7.8356   |
| 250          | 24.136               | 2736.1             | 2977.5           |                    | 3                 | .8897      |                   |       | 780.2                  | 2.4062             |             |          | 8.0346             |
| 300          | 26.446               | 2812.3             | 3076.7           | 9.2827             |                   |            | 7.94              |       |                        | 2.6389             | 2810.7      |          | 8.2172             |
| 400          | 31.063               | 2969.3             | 3280.0           |                    | 4                 | .3562      |                   |       | 377.8                  | 3.1027             |             |          | 8.5452             |
| 500          | 35.680               | 3132.9             | 3489.7           |                    | 1                 | .8206      | 8.159<br>2735     |       | 976.2                  | 3.5655             | 3132.2      |          | 8.8362             |
| 600<br>700   | 40.296<br>44.911     | 3303.3<br>3480.8   |                  | 10.1631<br>10.4056 | 7                 | .0200      | 8.356             |       | 770.2                  | 4.0279<br>4.4900   |             |          | 9.0999<br>9.3424   |
| 800          | 49.527               | 3665.4             |                  | 10.6312            | 5                 | .2841      | _                 |       | 75.8                   | 4.9519             | 3665.0      |          | 9.5682             |
| 900          | 54.143               | 3856.9             |                  | 10.8429            |                   | 000        | 8.538             |       | 70.0                   | 5.4137             |             |          | 9.7800             |
| 1000         | 58.758               | 4055.3             |                  | 11.0429            | 6                 | .2094      | 4 2968<br>8.865   |       | 279.3                  | 5.8755             |             |          | 9.9800             |
| 1100         | 63.373               | 4260.0             |                  | 11.2326            | 7                 | .1338      |                   |       | 189.3                  | 6.3372             |             |          | 10.1698            |
| 1200<br>1300 | 67.989<br>72.604     | 4470.9<br>4687.4   |                  | 11.4132<br>11.5857 | •                 |            | 9.156             |       | .00.0                  | 6.7988<br>7.2605   |             |          | 10.3504<br>10.5229 |
| 1000         |                      | MPa (120           |                  | 11.5057            |                   | MPa        | 1 (133.52         |       | 706.0                  |                    | 0.40 MPa    |          |                    |
|              | 7 _ 0.20             | IVII A (120        | .21 0)           |                    | _ 0.50            | ) IVII O   | 1 (100.02         | - 0)  |                        | ' -                | 0.40 IVII a | (145.0   | 1 0)               |
| Sat.         | 0.88578              | 2529.1             | 2706.3           |                    |                   |            | 2543.2            |       | .9 6.9917              | 0.46242            |             |          | 6.8955             |
| 150          | 0.95986              | 2577.1             | 2769.1           |                    |                   |            | 2571.0            |       | .2 7.0792              | 0.47088            |             |          | 6.9306             |
| 200<br>250   | 1.08049<br>1.19890   | 2654.6             | 2870.7<br>2971.2 |                    | 0.71<br>0.79      |            | 2651.0<br>2728.9  |       | .9 7.3132<br>.9 7.5180 | 0.53434<br>0.59520 |             |          | 7.1723<br>7.3804   |
| 300          | 1.31623              | 2808.8             | 3072.1           |                    | 0.73              |            | 2807.0            |       | .6 7.7037              | 0.65489            |             |          | 7.5677             |
| 400          | 1.54934              | 2967.2             | 3277.0           |                    | 1.03              |            | 2966.0            |       | .5 8.0347              | 0.77265            |             |          | 7.9003             |
| 500          | 1.78142              |                    | 3487.7           |                    |                   |            | 3130.6            |       | .6 8.3271              | 0.88936            |             |          | 8.1933             |
| 600          | 2.01302              |                    | 3704.8           |                    | 1.34              |            | 3301.6            |       | .0 8.5915              | 1.00558            |             |          | 8.4580             |
| 700<br>800   | 2.24434<br>2.47550   | 3479.9<br>3664.7   | 3928.8<br>4159.8 |                    | 1.49<br>1.65      |            | 3479.5<br>3664.3  |       | .2 8.8345<br>.3 9.0605 | 1.12152<br>1.23730 |             |          | 8.7012<br>8.9274   |
| 900          | 2.70656              | 3856.3             | 4397.7           |                    | 1.80              |            | 3856.0            |       | .3 9.0003              | 1.35298            |             |          | 9.1394             |
| 1000         | 2.93755              | 4054.8             | 4642.3           |                    | 1.95              |            | 4054.5            |       | .0 9.4726              | 1.46859            |             |          | 9.3396             |
| 1100         | 3.16848              | 4259.6             | 4893.3           | 9.8497             | 2.11              |            | 4259.4            | 4893  | .1 9.6624              | 1.58414            |             | 4892.9   | 9.5295             |
| 1200         | 3.39938              | 4470.5             |                  | 10.0304            | 2.26              |            | 4470.3            |       | .2 9.8431              | 1.69966            | -           |          | 9.7102             |
| 1300         |                      | 4687.1<br>MPa (151 |                  | 10.2029            | 2.42<br>P 0.60    |            | 4686.9<br>(158.83 |       | .0 10.0157             | 1.81516            | 0.80 MPa    |          | 9.8828             |
|              | F _ 0.30             | IVIFA (131         | .03 ()           | ï                  | _ 0.00            | IVIFA      | 1 (156.60         | , C)  |                        | <i>-</i>           | U.OU IVIFA  | 1 (170.4 | 1 ()               |
| Sat.         | 0.37483              |                    | 2748.1           |                    |                   |            | 2566.8            |       | .2 6.7593              | 0.24035            | 2576.0      |          | 6.6616             |
| 200          | 0.42503              |                    | 2855.8           |                    |                   |            | 2639.4            |       | .6 6.9683              | 0.26088            |             |          | 6.8177             |
| 250<br>300   | 0.47443<br>0.52261   |                    | 2961.0<br>3064.6 |                    |                   |            | 2721.2<br>2801.4  |       | .6 7.1833<br>.0 7.3740 | 0.29321<br>0.32416 |             |          | 7.0402<br>7.2345   |
| 350          | 0.57015              |                    | 3168.1           |                    |                   |            | 2881.6            |       | .1 7.5481              | 0.35442            |             |          | 7.4107             |
| 400          | 0.61731              |                    | 3272.4           |                    |                   |            | 2962.5            |       | .8 7.7097              | 0.38429            |             |          | 7.5735             |
| 500          | 0.71095              |                    | 3484.5           | 8.0893             | 0.59              | 200        | 3128.2            | 3483  | .4 8.0041              | 0.44332            | 3126.6      | 3481.3   | 7.8692             |
| 600          | 0.80409              |                    | 3702.5           |                    |                   |            | 3299.8            |       | .7 8.2695              | 0.50186            |             |          | 8.1354             |
| 700<br>800   | 0.89696<br>0.98966   |                    | 3927.0           |                    |                   | 725<br>457 | 3478.1<br>3663.2  |       | .4 8.5132<br>.9 8.7395 | 0.56011            |             |          | 8.3794<br>8.6061   |
| 900          | 1.08227              |                    | 4158.4<br>4396.6 |                    | 0.82              |            | 3855.1            |       | .9 8.7395<br>.2 8.9518 | 0.61820<br>0.67619 |             |          | 8.6061<br>8.8185   |
| 1000         | 1.17480              |                    | 4641.4           |                    | 0.97              |            | 4053.8            |       | .1 9.1521              | 0.73411            |             |          | 9.0189             |
| 1100         | 1.26728              | 4259.0             | 4892.6           |                    |                   |            | 4258.8            |       | .4 9.3420              | 0.79197            |             |          | 9.2090             |
| 1200         |                      |                    | 5149.8           |                    |                   | 309        | 4469.8            |       | .6 9.5229              | 0.84980            |             |          | 9.3898             |
| 1300         | 1.45214              | 4686.6             | 5412.6           | 9.7797             | 1.21              | 012        | 4686.4            | 5412  | .5 9.6955              | 0.90761            | 4686.1      | 5412.2   | 9.5625             |
|              |                      |                    |                  | Į.                 |                   |            |                   |       |                        |                    |             |          |                    |

| TABI        | LE A-6             |         |                             |                  |                    |          |                    |                  |                       |                  |                  |                  |  |  |
|-------------|--------------------|---------|-----------------------------|------------------|--------------------|----------|--------------------|------------------|-----------------------|------------------|------------------|------------------|--|--|
| Super       | ntinued)           |         |                             |                  |                    |          |                    |                  | •                     |                  |                  |                  |  |  |
| T           |                    |         | h                           | _                | V                  |          | h                  |                  | V                     |                  | h                |                  |  |  |
| ,           | V                  | и       | 11                          | S                | V                  | и        | 11                 | S                | V                     | и                | 11               | s<br>kJ/kg       |  |  |
| °C          | m <sup>3</sup> /kg | kJ/kg   | kJ/kg                       | kJ/kg K          | m <sup>3</sup> /kg | kJ/kg    | kJ/kg              | kJ/kg K          | m <sup>3</sup> /kg    | kJ/kg            | kJ/kg            | KJ/Kg<br>_K      |  |  |
|             | Р                  | 1.00 MF | Pa (179.88                  | C)               | F                  | 2 1.20 N | 1Pa (187.          | 96 C)            | Р                     | 1.40 MPa         | a (195.04        | I C)             |  |  |
| Sat.        | 0.19437            | 2582.8  | 2777.1                      | 6.5850           | 0.16326            | 2587.8   | 2783.8             | 6.5217           | 0.14078               | 2591.8           | 2788.9           | <b>6</b> .4675   |  |  |
| 200         | 0.20602            | 2622.3  | 2828.3                      | 6.6956           | 0.16934            |          | 2816.1             | 6.5909           | 0.14303               | 2602.7           | 2803.0           | 6.4975           |  |  |
| 250         | 0.23275            |         | 2943.1                      | 6.9265           | 0.19241            | -        | 2935.6             | 6.8313           | 0.16356               | 2698.9           | 2927.9           | 6.7488           |  |  |
| 300         | 0.25799            |         | 3051.6                      | 7.1246           | 0.21386            |          | 3046.3             | 7.0335           | 0.18233               | 2785.7           | 3040.9           | 6.9553           |  |  |
| 350         | 0.28250            |         | 3158.2                      | 7.3029           | 0.23455            | _        | 3154.2             | 7.2139           | 0.20029               | 2869.7<br>2953.1 | 3150.1           | 7.1379<br>7.3046 |  |  |
| 400<br>500  | 0.30661<br>0.35411 |         | 3264.5<br>3479.1            | 7.4670<br>7.7642 | 0.25482<br>0.29464 |          | 3261.3<br>3477.0   | 7.3793<br>7.6779 | 0.21782<br>0.25216    | 3121.8           | 3258.1<br>3474.8 | 7.3046<br>7.6047 |  |  |
| 600         | 0.33411            |         | 3698.6                      | 8.0311           | 0.29464            |          | 3697.0             | 7.0779           | 0.23210               | 3295.1           | 3695.5           | 7.8730           |  |  |
| 700         | 0.44783            |         | 3924.1                      | 8.2755           | 0.37297            |          | 3922.9             | 8.1904           | 0.20007               | 3474.4           | 3921.7           | 8.1183           |  |  |
| 800         | 0.49438            |         | 4156.1                      | 8.5024           | 0.41184            |          | 4155.2             | 8.4176           | 0.35288               | 3660.3           | 4154.3           | 8.3458           |  |  |
| 900         | 0.54083            |         | 4394.8                      | 8.7150           | 0.45059            |          | 4394.0             | 8.6303           | 0.38614               | 3852.7           | 4393.3           | 8.5587           |  |  |
| 1000        | 0.58721            |         | 4640.0                      | 8.9155           | 0.48928            |          | 4639.4             | 8.8310           | 0.41933               | 4051.7           | 4638.8           | 8.7595           |  |  |
| 1100        | 0.63354            | 4257.9  | 4891.4                      | 9.1057           | 0.52792            | 4257.5   | 4891.0             | 9.0212           | 0.45247               | 4257.0           | 4890.5           | 8.9497           |  |  |
| 1200        | 0.67983            | 4469.0  | 5148.9                      | 9.2866           | 0.56652            | 4468.7   | 5148.5             | 9.2022           | 0.48558               | 4468.3           | 5148.1           | 9.1308           |  |  |
| 1300        | 0.72610            | 4685.8  | 5411.9                      | 9.4593           | 0.60509            | 4685.5   | 5411.6             | 9.3750           | 0.51866               | 4685.1           | 5411.3           | 9.3036           |  |  |
|             |                    |         |                             |                  |                    |          |                    |                  |                       |                  |                  |                  |  |  |
|             |                    |         |                             |                  |                    |          |                    |                  | 1                     |                  |                  |                  |  |  |
|             | <i>P</i>           | 1.60 MF | Pa (201.37                  | C)               | F                  | 2 1.80 N | I <u>P</u> a (207. | 11 <u>C</u> )    | P 2.00 MPa (212.38 C) |                  |                  |                  |  |  |
| Sat.        | 0.12374            | 2594.8  | 2792.8                      | 6.4200           | 0.11037            | 2597.3   | 2795.9             | 6.3775           | 0.09959               | 2599.1           | 2798.3           | 6.3390           |  |  |
| 225         | 0.13293            | 2645.1  | 2857.8                      | 6.5537           | 0.11678            | 2637.0   | 2847.2             | 6.4825           | 0.10381               | 2628.5           | 2836.1           | 6.4160           |  |  |
| 250         | 0.14190            |         | 2919.9                      | 6.6753           | 0.12502            |          | 2911.7             | 6.6088           | 0.11150               | 2680.3           | 2903.3           | 6.5475           |  |  |
| 300         | 0.15866            |         | 3035.4                      | 6.8864           | 0.14025            |          | 3029.9             | 6.8246           | 0.12551               | 2773.2           | 3024.2           | 6.7684           |  |  |
| 350         | 0.17459            |         | 3146.0                      | 7.0713           | 0.15460            |          | 3141.9             | 7.0120           | 0.13860               | 2860.5           | 3137.7           | 6.9583           |  |  |
| 400         | 0.19007            |         | 3254.9                      | 7.2394           | 0.16849            |          | 3251.6             | 7.1814           | 0.15122               | 2945.9           | 3248.4           | 7.1292           |  |  |
| 500         | 0.22029            |         | 3472.6                      | 7.5410           | 0.19551            |          | 3470.4             | 7.4845           | 0.17568               | 3116.9           | 3468.3           | 7.4337           |  |  |
| 600<br>700  | 0.24999<br>0.27941 |         | 3693.9<br>3920.5            | 7.8101<br>8.0558 | 0.22200<br>0.24822 |          | 3692.3             | 7.7543           | 0.19962<br>0.22326    | 3291.5<br>3471.7 | 3690.7<br>3918.2 | 7.7043<br>7.9509 |  |  |
| 800         | 0.27941            |         | 4153.4                      | 8.2834           | 0.24622            |          | 3919.4<br>4152.4   | 8.0005<br>8.2284 | 0.22326               | 3658.0           | 4151.5           | 8.1791           |  |  |
| 900         | 0.33780            |         | 4392.6                      | 8.4965           | 0.30020            |          | 4391.9             | 8.4417           | 0.27012               | 3850.9           | 4391.1           | 8.3925           |  |  |
| 1000        | 0.36687            |         | 4638.2                      | 8.6974           | 0.32606            |          | 4637.6             | 8.6427           | 0.29342               | 4050.2           | 4637.1           | 8.5936           |  |  |
| 1100        | 0.39589            |         | 4890.0                      | 8.8878           | 0.35188            |          | 4889.6             | 8.8331           | 0.31667               | 4255.7           | 4889.1           | 8.7842           |  |  |
| 1200        | 0.42488            |         | 5147.7                      | 9.0689           | 0.37766            |          | 5147.3             | 9.0143           | 0.33989               | 4467.2           | 5147.0           | 8.9654           |  |  |
| 1300        | 0.45383            | 4684.8  | 5410.9                      | 9.2418           | 0.40341            | 4684.5   | 5410.6             | 9.1872           | 0.36308               | 4684.2           | 5410.3           | 9.1384           |  |  |
|             |                    | 0.50 ME | )- (000 OF                  | <b>C</b> \       | _                  | 2 2 20 1 | ID- (000           | 05.0)            | P                     | 2 FO MD          | (040.50          | . 0)             |  |  |
| Cot         |                    |         | <del>223.95</del><br>2801.9 | _                |                    |          | <u>Pa (233.</u>    |                  |                       |                  | <u>242.56</u>    |                  |  |  |
| Sat.<br>225 | 0.07995<br>0.08026 |         | 2805.5                      | 6.2558<br>6.2629 | 0.06667            | 2003.2   | 2803.2             | 6.1856           | 0.05706               | 2603.0           | 2802.7           | 0.1244           |  |  |
| 250         | 0.08705            |         | 2880.9                      | 6.4107           | 0.07063            | 2644 7   | 2856.5             | 6.2893           | 0.05876               | 2624.0           | 2829.7           | 6.1764           |  |  |
| 300         | 0.00703            |         | 3009.6                      | 6.6459           | 0.07003            |          | 2994.3             | 6.5412           | 0.06845               | 2738.8           | 2978.4           | 6.4484           |  |  |
| 350         | 0.10979            |         | 3127.0                      | 6.8424           | 0.09056            |          | 3116.1             | 6.7450           | 0.07680               | 2836.0           | 3104.9           | 6.6601           |  |  |
| 400         | 0.12012            |         | 3240.1                      | 7.0170           | 0.09938            |          | 3231.7             | 6.9235           | 0.08456               | 2927.2           | 3223.2           | 6.8428           |  |  |
| 450         | 0.13015            |         | 3351.6                      | 7.1768           | 0.10789            |          | 3344.9             | 7.0856           | 0.09198               | 3016.1           | 3338.1           | 7.0074           |  |  |
| 500         | 0.13999            | 3112.8  | 3462.8                      | 7.3254           | 0.11620            | 3108.6   | 3457.2             | 7.2359           | 0.09919               | 3104.5           | 3451.7           | 7.1593           |  |  |
| 600         | 0.15931            | 3288.5  | 3686.8                      | 7.5979           | 0.13245            | 3285.5   | 3682.8             | 7.5103           | 0.11325               | 3282.5           | 3678.9           | 7.4357           |  |  |
| 700         | 0.17835            | 3469.3  | 3915.2                      | 7.8455           | 0.14841            | 3467.0   | 3912.2             | 7.7590           | 0.12702               | 3464.7           | 3909.3           | 7.6855           |  |  |
| 800         | 0.19722            |         | 4149.2                      | 8.0744           | 0.16420            |          | 4146.9             | 7.9885           | 0.14061               | 3652.5           | 4144.6           | 7.9156           |  |  |
| 900         | 0.21597            |         | 4389.3                      | 8.2882           | 0.17988            |          | 4387.5             | 8.2028           | 0.15410               | 3846.4           | 4385.7           | 8.1304           |  |  |
| 1000        | 0.23466            |         | 4635.6                      | 8.4897           | 0.19549            |          | 4634.2             | 8.4045           | 0.16751               | 4046.4           | 4632.7           | 8.3324           |  |  |
| 1100        | 0.25330            |         | 4887.9                      | 8.6804           | 0.21105            |          | 4886.7             | 8.5955           | 0.18087               | 4252.5           | 4885.6           | 8.5236           |  |  |
| 1200        | 0.27190            |         | 5146.0                      | 8.8618           | 0.22658            |          | 5145.1             |                  | 0.19420               | 4464.4           | 5144.1           | 8.7053           |  |  |
| 1300        | 0.29048            | 4683.4  | 5409.5                      | 9.0349           | 0.24207            | 4082.6   | 5408.8             | 8.9502           | 0.20750               | 4681.8           | 5408.0           | 8.8786           |  |  |
|             |                    |         |                             |                  |                    |          |                    |                  |                       |                  |                  |                  |  |  |

| T          | V                  | и         | h                | s                | V                    | и                | h                | s                | V                    | и                | h      | S                |  |
|------------|--------------------|-----------|------------------|------------------|----------------------|------------------|------------------|------------------|----------------------|------------------|--------|------------------|--|
| °C         | m³/kg              | kJ/kg     | kJ/kg            | kJ/kg K          | m <sup>3</sup> /kg   | kJ/kg            | kJ/kg            | kJ/kg K          | m <sup>3</sup> /kg   | kJ/kg            | kJ/kg  | kJ/kg<br>_K      |  |
|            |                    | P 4.0 MPa | a (250.35        | C)               | P 4.5 MPa            | (257.44)         | C)               |                  | P 5.0 MPa (263.94 C) |                  |        |                  |  |
| Sat.       | 0.04978            | 2601.7    | 2800.8           | 6.0696           | 0.04406              | 2599.7           | 2798.0           | 6.0198           | 0.03945              | 2597.0           |        | 5.9737           |  |
| 275        | 0.05461            | 2668.9    | 2887.3           | 6.2312           | 0.04733              | 2651.4           | 2864.4           | 6.1429           | 0.04144              | 2632.3           | 2839.5 | 6.0571           |  |
| 300        | 0.05887            | 2726.2    | 2961.7           | 6.3639           | 0.05138              | 2713.0           | 2944.2           | 6.2854           | 0.04535              | 2699.0           |        | 6.2111           |  |
| 350        | 0.06647            |           | 3093.3           | 6.5843           | 0.05842              | 2818.6           | 3081.5           | 6.5153           | 0.05197              | 2809.5           |        | 6.4516           |  |
| 400        | 0.07343            |           | 3214.5           | 6.7714           | 0.06477              | 2914.2           | 3205.7           | 6.7071           | 0.05784              | 2907.5           |        | 6.6483           |  |
| 450        | 0.08004            |           | 3331.2           | 6.9386           | 0.07076              | 3005.8           | 3324.2           | 6.8770           | 0.06332              | 3000.6           |        | 6.8210           |  |
| 500        | 0.08644            |           | 3446.0<br>3674.9 | 7.0922<br>7.3706 | 0.07652<br>0.08766   | 3096.0<br>3276.4 | 3440.4           | 7.0323<br>7.3127 | 0.06858              | 3091.8<br>3273.3 |        | 6.9781           |  |
| 600<br>700 | 0.09886<br>0.11098 |           | 3906.3           | 7.6214           | 0.08766              | 3460.0           | 3670.9<br>3903.3 | 7.5647           | 0.07870<br>0.08852   | 3457.7           |        | 7.2605<br>7.5136 |  |
| 800        | 0.11098            |           | 4142.3           | 7.8523           | 0.09830              | 3648.8           | 4140.0           | 7.7962           | 0.08832              | 3646.9           |        | 7.7458           |  |
| 900        | 0.13476            |           | 4383.9           | 8.0675           | 0.11972              | 3843.3           | 4382.1           | 8.0118           | 0.10769              | 3841.8           |        | 7.9619           |  |
| 1000       | 0.14653            |           | 4631.2           | 8.2698           | 0.13020              | 4043.9           | 4629.8           | 8.2144           | 0.11715              | 4042.6           |        | 8.1648           |  |
| 1100       | 0.15824            |           | 4884.4           | 8.4612           | 0.14064              | 4250.4           | 4883.2           | 8.4060           | 0.12655              | 4249.3           |        | 8.3566           |  |
| 1200       | 0.16992            | 4463.5    | 5143.2           | 8.6430           | 0.15103              | 4462.6           | 5142.2           | 8.5880           | 0.13592              | 4461.6           |        | 8.5388           |  |
| 1300       | 0.18157            | 4680.9    | 5407.2           | 8.8164           | 0.16140              | 4680.1           | 5406.5           | 8.7616           | 0.14527              | 4679.3           |        | 8.7124           |  |
|            |                    | P 6.0 MPa | a (275.59        | C)               | P 7.0 MPa            | (285.83)         | C)               |                  | P 8.0 MPa            | (295.01          | C)     |                  |  |
| Sat.       | 0.03245            |           | 2784.6           | 5.8902           | 0.027378             |                  | 2772.6           | 5.8148           | 0.023525             | _                |        | 5.7450           |  |
| 300        | 0.03619            |           | 2885.6           | 6.0703           | 0.029492             |                  | 2839.9           | 5.9337           | 0.024279             |                  |        | 5.7937           |  |
| 350        | 0.04225            | 2790.4    | 3043.9           | 6.3357           | 0.035262             | 2770.1           | 3016.9           | 6.2305           | 0.029975             | 2748.3           | 2988.1 | 6.1321           |  |
| 400        | 0.04742            | 2893.7    | 3178.3           | 6.5432           | 0.039958             | 2879.5           | 3159.2           | 6.4502           | 0.034344             | 2864.6           | 3139.4 | 6.3658           |  |
| 450        | 0.05217            | 2989.9    | 3302.9           | 6.7219           | 0.044187             | 2979.0           | 3288.3           | 6.6353           | 0.038194             | 2967.8           | 3273.3 | 6.5579           |  |
| 500        | 0.05667            |           | 3423.1           | 6.8826           | 0.048157             |                  | 3411.4           | 6.8000           | 0.041767             |                  |        | 6.7266           |  |
| 550        | 0.06102            |           | 3541.3           | 7.0308           | 0.051966             | 3167.9           | 3531.6           | 6.9507           | 0.045172             |                  |        | 6.8800           |  |
| 600        | 0.06527            |           | 3658.8           | 7.1693           | 0.055665             |                  | 3650.6           | 7.0910           | 0.048463             |                  |        | 7.0221           |  |
| 700        | 0.07355<br>0.08165 |           | 3894.3<br>4133.1 | 7.4247<br>7.6582 | 0.062850<br>0.069856 |                  | 3888.3<br>4128.5 | 7.3487<br>7.5836 | 0.054829<br>0.061011 | 3635.7           |        | 7.2822<br>7.5185 |  |
| 800<br>900 | 0.08163            |           | 4376.6           | 7.8751           | 0.069656             | 3835.7           | 4373.0           | 7.8014           | 0.067082             |                  |        | 7.5165           |  |
| 1000       | 0.00904            |           | 4625.4           | 8.0786           | 0.076730             | 4037.5           | 4622.5           | 8.0055           |                      | 4035.0           |        | 7.7372           |  |
| 1100       | 0.10543            |           | 4879.7           | 8.2709           | 0.000371             |                  | 4877.4           | 8.1982           | 0.079025             |                  |        | 8.1350           |  |
| 1200       | 0.11326            |           | 5139.4           | 8.4534           | 0.097075             |                  | 5137.4           | 8.3810           | 0.084934             |                  |        | 8.3181           |  |
| 1300       | 0.12107            |           | 5404.1           | 8.6273           | 0.103781             |                  | 5402.6           | 8.5551           | 0.090817             |                  |        | 8.4925           |  |
|            |                    | P Q O MP: | a (303.35        | C)               | P 10.0 MF            | ر<br>ام (311 مر  | ) (C)            |                  | P 12.5 M             | Pa (327.8        | 1 C)   |                  |  |
| Sat.       | 0.020489           |           | 2742.9           | 5.6791           | 0.018028             |                  | 2725.5           | 5.6159           | 0.013496             |                  |        | 5.4638           |  |
| 325        | 0.023284           |           | 2857.1           | 5.8738           | 0.019877             |                  | 2810.3           | 5.7596           | 0.0.0.00             |                  |        |                  |  |
| 350        | 0.025816           |           | 2957.3           | 6.0380           | 0.022440             | -                | 2924.0           | 5.9460           | 0.016138             | 2624.9           | 2826.6 | 5.7130           |  |
| 400        | 0.029960           | 2849.2    | 3118.8           | 6.2876           | 0.026436             | 2833.1           | 3097.5           | 6.2141           | 0.020030             | 2789.6           | 3040.0 | 6.0433           |  |
| 450        | 0.033524           | 2956.3    | 3258.0           | 6.4872           | 0.029782             | 2944.5           | 3242.4           | 6.4219           | 0.023019             | 2913.7           | 3201.5 | 6.2749           |  |
| 500        | 0.036793           | 3056.3    | 3387.4           | 6.6603           | 0.032811             | 3047.0           | 3375.1           | 6.5995           | 0.025630             | 3023.2           | 3343.6 | 6.4651           |  |
| 550        | 0.039885           |           | 3512.0           | 6.8164           | 0.035655             |                  | 3502.0           | 6.7585           | 0.028033             |                  |        | 6.6317           |  |
| 600        | 0.042861           |           | 3634.1           | 6.9605           | 0.038378             |                  | 3625.8           | 6.9045           | 0.030306             |                  |        | 6.7828           |  |
| 650        | 0.045755           |           | 3755.2           | 7.0954           | 0.041018             |                  | 3748.1           | 7.0408           | 0.032491             |                  |        | 6.9227           |  |
| 700        | 0.048589           |           | 3876.1           | 7.2229           | 0.043597             |                  | 3870.0           | 7.1693           | 0.034612             |                  |        | 7.0540           |  |
| 800        | 0.054132           |           | 4119.2           | 7.4606           | 0.048629             |                  | 4114.5           | 7.4085           | 0.038724             |                  |        | 7.2967           |  |
| 900        | 0.059562           |           | 4365.7           | 7.6802           | 0.053547             |                  | 4362.0           | 7.6290           | 0.042720<br>0.046641 |                  |        | 7.5195           |  |
|            | 0.064919           |           | 4616.7           | 7.8855           | 0.058391<br>0.063183 |                  | 4613.8           | 7.8349<br>8.0289 | 0.046641             |                  |        | 7.7269           |  |
|            | 0.075492           |           | 4872.7<br>5133.6 | 8.0791<br>8.2625 | 0.063163             |                  | 4870.3<br>5131.7 | 8.2126           | 0.050310             |                  |        | 7.9220<br>8.1065 |  |
|            | 0.073492           |           | 5399.5           | 8.4371           | 0.007938             |                  | 5398.0           | 8.3874           | 0.054342             |                  |        | 8.2819           |  |
|            | 3.220.00           | 20        |                  |                  |                      |                  |                  |                  |                      |                  |        |                  |  |
|            |                    |           |                  |                  |                      |                  |                  | ı                |                      |                  |        |                  |  |
|            |                    | =         |                  |                  |                      |                  | =                |                  |                      |                  |        |                  |  |

| TAF          | BLE A-6              |             |                  |                  |                      |                  |                  |        |                      |                  |                  |                  |
|--------------|----------------------|-------------|------------------|------------------|----------------------|------------------|------------------|--------|----------------------|------------------|------------------|------------------|
|              | erheated w           | ater (Co.   | ncluded)         |                  |                      |                  |                  |        |                      |                  |                  |                  |
| <u> </u>     | V                    | и           | h                | s                | V                    | и                | h                | s      | V                    | и                | h                | s                |
| °C           |                      | kJ/kg       | kJ/kg            | kJ/kg K          | m <sup>3</sup> /kg   | kJ/kg            | kJ/kg            |        | m <sup>3</sup> /kg   | kJ/kg            | kJ/kg            | kJ/kg K          |
|              | <u>P_ 15.0 l</u>     | √Pa (342    | .16 C)           |                  | P_                   | 1 <u>7.5 MPa</u> | (354.67          | (C)    | P_                   | 20.0 MPa         | <u>a</u> (365.75 |                  |
| Sat.         | 0.010341             | 2455.7      | 2610.8           | 5.3108           | 0.007932             | 2390.7           | 2529.5           | 5.1435 | 0.005862             | 2294.8           | 2412.1           | 4.9310           |
| 350          | 0.011481             |             | 2693.1           | 5.4438           | 1                    |                  |                  |        |                      |                  |                  |                  |
| 400          | 0.015671             |             | 2975.7           | 5.8819           | 0.012463             |                  | 2902.4           |        | 0.009950             | 2617.9           | 2816.9           | 5.5526           |
| 450<br>500   | 0.018477<br>0.020828 |             | 3157.9<br>3310.8 | 6.1434<br>6.3480 | 0.015204<br>0.017385 |                  | 3111.4<br>3276.7 |        | 0.012721<br>0.014793 | 2807.3<br>2945.3 | 3061.7<br>3241.2 | 5.9043<br>6.1446 |
| 550          | 0.020828             |             | 3450.4           | 6.5230           | 0.017305             |                  | 3423.6           |        | 0.014793             | 3064.7           | 3396.2           | 6.3390           |
| 600          | 0.024921             |             | 3583.1           | 6.6796           | 0.021073             |                  | 3561.3           |        | 0.018185             | 3175.3           | 3539.0           | 6.5075           |
| 650          | 0.026804             |             | 3712.1           | 6.8233           | 0.022742             |                  | 3693.8           |        | 0.019695             | 3281.4           | 3675.3           | 6.6593           |
| 700          | 0.028621             |             | 3839.1           | 6.9573           | 0.024342             |                  | 3823.5           |        | 0.021134             | 3385.1           | 3807.8           | 6.7991           |
| 800          | 0.032121             | 3609.3      | 4091.1           | 7.2037           | 0.027405             | 3599.7           | 4079.3           | 7.1237 | 0.023870             | 3590.1           | 4067.5           | 7.0531           |
| 900          | 0.035503             |             | 4343.7           | 7.4288           | 0.030348             |                  | 4334.6           |        | 0.026484             | 3795.7           | 4325.4           | 7.2829           |
| 1000         | 0.038808             |             | 4599.2           | 7.6378           | 0.033215             |                  | 4592.0           |        | 0.029020             | 4004.3           | 4584.7           | 7.4950           |
| 1100         | 0.042062             |             | 4858.6           | 7.8339           | 0.036029             | _                |                  | 7.7588 | 0.031504             | 4216.9           | 4847.0           | 7.6933           |
| 1200<br>1300 | 0.045279<br>0.048469 |             | 5122.3<br>5390.3 | 8.0192<br>8.1952 | 0.038806<br>0.041556 |                  | 5117.6<br>5386.5 |        | 0.033952<br>0.036371 | 4433.8<br>4655.2 | 5112.9<br>5382.7 | 7.8802<br>8.0574 |
| 1000         | 0.040403             | P 25.0      |                  | 0.1002           | 0.041330             | P 30.0           |                  | 0.1210 | 0.000071             | P_35.            |                  | • 0.0374         |
|              |                      | _           | į                |                  | I                    |                  |                  |        | 1                    |                  |                  | •                |
| 375<br>400   | 0.001978<br>0.006005 | 1799.9      | 1849.4<br>2578.7 | 4.0345<br>5.1400 | 0.001792<br>0.002798 |                  | 1791.9<br>2152.8 |        | 0.001701<br>0.002105 | 1702.8<br>1914.9 | 1762.4<br>1988.6 | 3.8724<br>4.2144 |
| 425          | 0.000003             |             | 2805.0           | 5.4708           | 0.002790             |                  | 2611.8           |        | 0.002103             | 2253.3           | 2373.5           | 4.7751           |
| 450          | 0.009176             |             | 2950.6           | 5.6759           | 0.006737             |                  | 2821.0           | 5.4422 | 0.004957             | 2497.5           | 2671.0           | 5.1946           |
| 500          | 0.011143             |             | 3165.9           | 5.9643           | 0.008691             |                  | 3084.8           | 5.7956 | 0.006933             | 2755.3           | 2997.9           | 5.6331           |
| 550          | 0.012736             | 3020.8      | 3339.2           | 6.1816           | 0.010175             | 2974.5           | 3279.7           | 6.0403 | 0.008348             | 2925.8           | 3218.0           | 5.9093           |
| 600          | 0.014140             |             | 3493.5           | 6.3637           | 0.011445             |                  | 3446.8           |        | 0.009523             | 3065.6           | 3399.0           | 6.1229           |
| 650          | 0.015430             |             | 3637.7           | 6.5243           | 0.012590             |                  | 3599.4           |        | 0.010565             | 3190.9           | 3560.7           | 6.3030           |
| 700          | 0.016643             |             | 3776.0           | 6.6702           | 0.013654             |                  | 3743.9           |        | 0.011523             | 3308.3           | 3711.6           | 6.4623           |
| 800          | 0.018922             |             | 4043.8           | 6.9322           | 0.015628             |                  | 4020.0           | 6.8301 | 0.013278             | 3531.6           | 3996.3           | 6.7409           |
| 900          | 0.021075             |             | 4307.1           | 7.1668           | 0.017473             |                  |                  | 7.0695 | 0.014904             | 3749.0           | 4270.6<br>4541.5 | 6.9853<br>7.2069 |
| 1000<br>1100 | 0.023150<br>0.025172 |             | 4570.2<br>4835.4 | 7.3821<br>7.5825 | 0.019240<br>0.020954 |                  | 4555.8<br>4823.9 |        | 0.016450<br>0.017942 | 3965.8<br>4184.4 | 4812.4           | 7.2009<br>7.4118 |
| 1200         | 0.023172             |             | 5103.5           | 7.7710           | 0.020334             |                  | 5094.2           |        | 0.017342             | 4406.1           | 5085.0           | 7.6034           |
| 1300         | 0.029115             |             | 5375.1           | 7.9494           | 0.024279             |                  | 5367.6           |        | 0.020827             |                  | 5360.2           | 7.7841           |
|              |                      | P_40.0      | MPa              |                  |                      | P_50.0           | MPa              |        |                      | P_60.            | 0 MPa            |                  |
| 375          | 0.001641             |             | 1742.6           | 3.8290           | 0.001560             |                  | 1716.6           |        | 0.001503             | 1609.7           | 1699.9           | 3.7149           |
| 400          | 0.001911             |             | 1931.4           | 4.1145           | 0.001731             |                  | 1874.4           |        | 0.001633             | 1745.2           | 1843.2           | 3.9317           |
| 425<br>450   | 0.002538<br>0.003692 |             | 2199.0<br>2511.8 | 4.5044<br>4.9449 | 0.002009<br>0.002487 |                  | 2060.7           |        | 0.001816<br>0.002086 |                  | 2001.8<br>2180.2 |                  |
| 500          | 0.005623             |             | 2906.5           | 5.4744           | 0.002407             |                  |                  | 5.1762 | 0.002000             |                  | 2570.3           | 4.9356           |
| 550          | 0.006985             |             | 3154.4           | 5.7857           | 0.005118             |                  | 3025.4           |        | 0.003955             |                  | 2901.9           | 5.3517           |
| 600          | 0.008089             |             | 3350.4           | 6.0170           | 0.006108             |                  | 3252.6           |        | 0.004833             |                  | 3156.8           | 5.6527           |
| 650          | 0.009053             |             | 3521.6           | 6.2078           | 0.006957             |                  | 3443.5           |        | 0.005591             | 3031.3           | 3366.8           | 5.8867           |
| 700          | 0.009930             |             | 3679.2           | 6.3740           | 0.007717             | 3228.7           | 3614.6           | 6.2179 | 0.006265             |                  | 3551.3           | 6.0814           |
| 800          | 0.011521             | 3511.8      | 3972.6           | 6.6613           | 0.009073             |                  | 3925.8           |        | 0.007456             | 3432.6           | 3880.0           | 6.4033           |
| 900          | 0.012980             |             | 4252.5           | 6.9107           | 0.010296             |                  | 4216.8           |        | 0.008519             |                  | 4182.1           | 6.6725           |
| 1000         | 0.014360             |             | 4527.3           | 7.1355           | 0.011441             |                  | 4499.4           |        | 0.009504             |                  | 4472.2           |                  |
| 1100         | 0.015686             |             | 4801.1           | 7.3425           | 0.012534             |                  | 4778.9           |        | 0.010439             |                  | 4757.3           | 7.1255           |
| 1200         | 0.016976             |             | 5075.9           | 7.5357<br>7.7175 | 0.013590             |                  | 5058.1           |        | 0.011339             |                  |                  | 7.3248           |
| 1300         | 0.018239             | 40∠3.3<br>• | 5352.8           | 7.7175           | 0.014620             | 4007.5           | 5338.5           | 7.0046 | 0.012213             | 4091.0           | 0024.0           | 1.0111<br>•      |
|              |                      |             |                  |                  |                      |                  |                  |        |                      |                  |                  |                  |

#### REFERENCES

- Gypsum Association Organisation, "Using Gypsum Board for Walls and Ceilings Section 1"
   [online] http://www.gypsum.org/technical/using-gypsum-board-for-walls-and-ceilings/using-gypsum-board-for-walls-and-ceilings-section-i/, (2012-2015).
- 2. The Engineering Toolbox "Water Thermal Properties" [online] http://www.engineeringtoolbox.com/water-thermal-properties-d\_162.html.
- 3. Wiley Online Library, "Appendix C Heat Exchanger", [online] http://online library.wiley.com/doi/10.1002/9781118403198.app3/pdf, (August 30, 2012).
- 4. ONEAL Steel Company, "Carbon and Alloy Steel", [online] http://www.onealsteel.com/carbon-and-alloy-steel.html, (2012-2015).
- 5. Pipe Flow Calculations, "Fluid Properties Chart- Flue Gas Properties", [online] http://www.pipeflowcalculations.com/about/about.php, (2015).
- 6. Sandvik Material Technology, "Elbow 90° short radius, butt weld fittings", [online]

  http://www.smt.sandvik.com/en/pr oducts/tube-pipe-fittings-and-flanges/tubular
  products/fittings/butt-weld-fittings-ansiasme/elbows-90-short-radius/, [pub] Sandviken AB,

  Sweden. (1998)
- 7. Sandvik Material Technology, "Butt Weld Fittings according to ANSI/ASME", [online] http://www.smt.sandvik.com/en/pr oducts/tube-pipe-fittings-and-flanges/tubular-products/fittings/butt-weld-fittings-ansiasme/ Sandviken AB, Sweden. (1998).

- 8. Ontario Energy Board Consumers, "Natural Gas Rate Updates- Current Rates for supply at a glance", [online]

  http://www.ontarioenergyboard.ca/OEB/Consumers/Natural+Gas/Natural+Gas+Rates, [updated]

  (March 23, 2015).
- 9. Grundfos Ecademy, "Basic Principles and Pump Types- How to establish Head", [online] https://ca.grundfos.com/content/dam/GPU/Ecademy/Pump% 20basic% 20princ iples% 20pump% 20 types/Pump-Types-Task9-Establish-Head.pdf.
- 10. D. Chisholm, "Developments in heat exchanger technology-1", [pub] Barking: Applied Science Publishers Ltd, London, (September 1980).
- 11. Jai P. Gupta, "Fundamentals of Heat Exchanger and Pressure Vessel Technology", Edition One, [pub] Springer-Verlag, Berlin-Heidelberg, (November 1, 1985).
- 12. D.A. Reay, "Heat Recovery System, A directory of Equipment and Techniques". [pub] Halsted Press, New York, USA (February 1980).