Abstract: In this system, they are implementing a smart home control network by using wireless sensor networks (WSNs) power line communication (PLCs). In the smart home, the goals are to reduce the impact of wireless interference. In the smart home, they are to control the network 4 unnecessary energy consumption. In each room, they are establishing an isolated WSNs with one coordinator with the integrated into the PLCs transceiver. Management station via PLCs in WSNs obtained by transferring environment parameters for is coordinator responsible. In smart home appliances they control the message for PLCs then it's directly transferred by using rather than WSNs proposed smart home control network is substantially mitigated. The impact of wireless interference on the experimental results. Lightning system & analysis of the illumination of a fluorescent lamp are presented additionally in smart home control. Control was evaluated without the energy saving of lightning system. Under the smart control, it can be reduced at 40% least on the cloudy or sunny day & it can indicate the numerical result of electricity consumption. The moreover smart home control network algorithm implemented by the proposed for the prototype. Experimental results presented in this system show the capacity of these modems to overcome the hostile environment due to the inverter and to guarantee reliable communication over the PWM network. The proposed system is practically possible for smart home control networks.

Keywords: Appliance Control, Energy Saving, Power Line Communications (PLCs), Smart Homes, Smart Lighting Control, Wireless Sensor Networks (WSNs).

I. INTRODUCTION

NUMEROUS studies [1]–[3] have shown that smart homes or intelligent buildings can use energy more efficiently than traditional buildings. Thus, several researchers have advocated building smart homes for reducing energy consumption. Almost all proposed smart home architectures in the literature adopt the wireless sensor network (WSN) as the dominant technology [3]–[9]. The WSN, rather than WI-Fi, has been popularly employed for remote control and monitoring applications Manuscript received March 13, 2015; revised June 16, 2015, August 9, 2015, and October 7, 2015; accepted November 18, 2015. Date of publication December 10, 2015; date of current version May 15, 2016. Digital Object Identifier 10.1109/TIE.2016.2379586[10]–[13] because it has a low cost and consumes little power. However, several problems in the construction of smart homes with WSNs are yet to be solved. The studies [14] and [15] presented a comprehensive review of problems related to the development of smart homes with WSN technologies. For WSNs, if the network coverage exceeds a certain range or the network environment cannot provide a line-of-sight transmission, then high transmission error and data loss rates may occur. Hence, designing a scalable network infrastructure for WSNs is very important. Although several techniques have been proposed to improve WSN connectivity [16], the challenge of improving connectivity in WSNs still exists. Furthermore, WSNs and WLANs both operate in the 2.4-GHz industrial, science and medical band. Experimental results [17]–[19] have demonstrated that Wi-Fi networks and WSNs may function together even if they operate in the same frequency band. However, inevitable wireless interference and packet losses may occur in WSNs. To solve this problem, some methods have been proposed for interference avoidance [19] or coordinating such a heterogeneous network environment [20]. However, a more effective interference immunity solution for WSNs remains to be found.
To resolve the issue of wireless interference, the WSN is integrated herein with the power line communication (PLC) technology to realize a smart home control network. Well known PLC technologies include X10 [21], CEBus[22], LonWorks [23], and HomePlug [24]. According to the relevant specifications, PLC can be categorized as broad-band PLC (B-PLC) or narrow-band PLC (N-PLC) [25]. X10, CEBus, and LonWorks are forms of N-PLC, while HomePlug is a form of B-PLC. B-PLC uses a higher frequency band (1.8 to 250 MHz) and has a wider spectrum. Hence, B-PLC can offer a higher data rate and lower network latency than N-PLC. However, N-PLC has a low cost of deployment and the ability to communicate across the transformer. Recently, multicarrier based N-PLC technologies such as Powerline Intelligent Metering Evolution, G3-PLC, IEEE 1901.2, and ITU-T G. Hnem have been proposed to offer higher data rates [25]. Some recent proposals [26]–[30] for smart homes or control networks have adopted PLC technologies to build the communication systems. One of the most important benefits of using PLCs in this work is a less relevant packet failure rate for WSNs. One of the main purposes of smart homes is to reduce energy consumption. To achieve this goal, smart controls must be implemented in a smart home. Additionally, smart lighting control systems must consider the contribution of natural light (daylight). Therefore, several works [31]–[33] suggested that daylight can substitute for partial electrical lighting in commercial or institutional buildings. Sensors and smart controllers enable daylight to reduce the power used to run electrical lighting and to sufficiently illuminate an office. Although many ideas about smart lighting control for energy saving in smart homes have been proposed, a practical smart lighting control system with high reliability and control accuracy remains to be found. An accurate and reliable lighting control system must have a robust environmental illumination gathering system.

However, only a few papers [11] considered the impact of packet failure on the performance of smart control systems. According to the simulation results in [11], packet failure not only deteriorates the final control achievement but also slows down the speed of approaching the control goal. Accordingly, constructing the communication network with a low packet failure rate to support smart control systems is extremely required. The novelty and contributions of this paper are summarized as follows. First, the scalable architecture that combines WSN and PLC technologies for the smart home control network is presented. The proposed network infrastructure can considerably mitigate the impact of radio interference and simplify node placement in WSNs. The proposed smart home control system includes the environmental information gathering, communication, and appliance control subsystems. It also allows users to remotely monitor and control home appliances using the Internet and the web-based management system. Second, a smart control algorithm for lighting systems in smart homes or intelligent buildings is proposed. Third, a prototype of the smart home control network with the proposed smart lighting control algorithm is developed, tested, and evaluated. The rest of this paper is organized as follows. Section II discusses different architectures of smart home control networks. Performance comparisons between different network architectures are made. Section III presents a smart lighting control algorithm and evaluates the energy saving ratio of the smart home under smart control. Section IV describes issues related to the implementation of the proposed smart home control network. A prototype of the proposed system is implemented and tested. Finally, Section V provides the concluding remarks.

II. DESIGN AND PERFORMANCE EVALUATION OF SMART HOME CONTROL NETWORKS

A. Architectural Design of Smart Home Control Networks

Fig.1 displays the proposed architecture of the smart home control network. Three rooms in a smart home are considered as an example. Each home appliance is equipped with a PLC transceiver, which can directly receive commands to control the home appliance and send replies about the state of the home appliance to the management station. An isolated WSN, which includes various sensor nodes and one coordinator that is integrated into the PLC transceiver, is deployed in each room to collect environmental information, such as temperature, illumination, humidity, and other information. In the proposed architecture, WSNs are responsible for collecting environmental parameters and transmitting them to

![Fig. 1. Architecture of Proposed Smart Home Control Network](image-url)
WSN coordinators, while PLCs are used as a network backbone to connect all WSN coordinators and transfer the collected environmental data to the management station and the control messages to home appliances. The proposed design in this paper is quite different from that of conventional WSN based smart homes [3]-[5], [8], [9], [11] in which the control commands for home appliances are transferred using WSNs. The main purposes of the proposed design are to extend the coverage of a smart home control network and mitigate the impact of wireless interference on the WSN data gathering subsystem. A similar solution that also combines wireless and PLC technologies are the INSTEON technology [30]. However, the wireless technology in INSTEON is mainly used to relay control commands and extend the scale of a control network, rather than gather environmental information for smart controls. Another issue in a smart home is how a user can remotely connect and get access to a smart home control network. One method uses a web-based service for sharing information with the management station at the remote site via Internet [34], [35]. Another access method adopts the mobile cellular service architecture [36], [37], such as GSM, GPRS, or 3G/4G. Thus, there is no difficulty to remotely monitor the smart home and control it in real time via the Internet.

B. Performance of WSNs under Interference of WLANs

Wi-Fi networks are extensively deployed around the world, and Wi-Fi signals degrade the performance of WSNs with low power consumption [18], [19]. To study the impact of WLAN interference on the performance of WSNs, this study investigates the performance of ZigBee WSNs under different jamming traffic loads from a Wi-Fi network. The performance of WSNs is compared across different network architectures, which are displayed in Fig. 2. Fig. 2(a) depicts the conventional infrastructure of WSNs with relay nodes (pure WSN architecture). The environment with three rooms in a line is considered here. The notebook in Room A is used to receive the jamming traffic (UDP traffic) from the Wi-Fi access point (AP). To solve the problem of the obstacles in the form of walls between rooms, several relay nodes for the WSN are allocated among the rooms to ensure that all ZigBee end devices can communicate with the coordinator in Room A. The polling rate of each relay node is set to 0.5 s. Fig. 2(b) presents the proposed infrastructure that includes the WSN plus PLC. Each room is allocated one WSN coordinator, which is integrated into the PLC transceiver and is denoted by PLC+C in Fig. 2(b). In other words, the PLC network connects all ZigBee coordinators in different rooms. Next, the failure rate of packet transmissions in the considered network architectures that are displayed in Fig. 2 is measured. The packet failure rate PF herein is defined as follows:

$$PF = \frac{\text{Total number of failed packets}}{\text{Total number of transmitted packets}}$$

(1)

Figs. 3 and 4 show the packet failure rates of individual ZigBee end devices for home appliances. The proposed design in this paper is an extension of the WSN-based home appliance control network, and the performance is better. That is, the packet failure rate of N2 is smaller than that of N1, as shown in Fig. 3. A similar phenomenon can be found between end devices N3 and N4. This result is reasonable because a shorter distance yields a better SNR. With respect to wireless interference, when the ZigBee end device is closer to the Wi-Fi AP, it encounters greater interference. Therefore, the packet failure rate of N1 is smaller than that of N3, as shown in Fig. 4. Similar results can be found at N2 and N4. The results in Figs. 3 and 4 reveal that the performance of the WSN+PLC architecture is much better than that of the pure WSN architecture mainly because, in the pure WSN architecture, the relay nodes still encounter wireless interference from the WLAN. In the WSN+PLC architecture, the WSN signals received by the PLC+C coordinator are transferred to the coordinator in Room A by the PLC network which is immune to wireless interference. Hence, the packet failure rate of the WSN+PLC architecture is much less than that of the pure WSN architecture. On the other hand, compared with the methods in [11], [19], and [20], by modifying the transmission mechanism of WSNs to reduce packet failure rates, no modification in the transmission protocol of WSNs is required when the proposed WSN+PLC architecture is used. Therefore, the proposed WSN+PLC architecture in Fig. 2(b) is a good candidate for the smart home control network.
III. SMART LIGHTING CONTROL AND ENERGY SAVING

A. Smart Control Algorithm for Lighting Systems

To save the most energy, the management system must automatically adjust the working states of home appliances in response to environmental data. The CIE Central Bureau suggests that the minimum illumination (level) of indoor work places should range from 300 to 500 lx [38]. To save energy consumption, natural light must be considered in the design of lighting systems for buildings [31]–[33]. Hence, in the following, a smart control algorithm for lighting systems, as shown in Fig. 5, is proposed. Fig. 5 shows the workflow of the proposed smart lighting control algorithm that includes the shading control. First, two proper threshold values \(L \) and \(H \) must be set for the smart control algorithm. For example, the lower threshold \(L \) is 500 lx [38], and the upper threshold \(H \) is 700 lx. Here, the room is assumed to include \(N \) lighting circuits, and the illumination by each lighting circuit can be detected by one light sensor. Each lighting circuit provides \(D \) levels of digital dimming control [39]. The state of a lighting circuit is denoted by the integer \(X \), where \(0 \leq X \leq D \). The state \(X = D \) indicates that the lighting circuit is fully ON, and \(X = 0 \) represents that the lighting circuit is OFF. The window blinds, which are used to prevent glare from the sun, are also assumed to provide a dimming function of \(W \) levels. The state of the window blinds is the integer \(Y \), where \(0 \leq Y \leq W \). The state \(Y = W \) represents that the blinds are fully closed, while \(Y = 0 \) indicates that the blinds are fully opened.
B. Analysis of Illumination of Fluorescent Lamp

To understand how much energy can be saved using the proposed smart control algorithm, the contribution of the fluorescent lamp to illumination is analyzed first. The analysis of illumination of a fluorescent lamp is based on the following assumptions.

1) The length of a fluorescent lamp is denoted by \(\Gamma \). Since the length of a fluorescent lamp is usually much larger than the diameter of its tube \(d \) such as \(\Gamma = 0.59 \text{ m} \) _ \(d = 0.028 \text{ m} \) [40], the fluorescent lamp is treated as a line source of light in the following analysis.

2) Since the light sensors are placed on the working table, the effect of reflection from the floor is ignored. The reflection from walls or obstacles is weaker than the directly incident light, so the scattering effect can also be neglected. The lamp is assumed to be parallel to the \(x \)-axis, and its center is at point \(P0 = (x0, y0, z0) \). Each lamp can be assumed to consist of an infinite number of point light sources. The contribution of the point light source at \(P0 \) to illumination at \(P1 = (x1, y1, z1) \) is denoted by \(EP1(P0) \), which is given by

\[
EP1(P0) = \phi \cos \theta \pi R^2 = \phi 4\pi R^2 |x0 - z1| R(2)
\]
Detailed derivations for (5) are given in the Appendix. Table I is the data sheet of the TL-D fluorescent lamps [40]. The reflection coefficient R_f is measured to be 2.16. The listed parameters in Table I are used in the simulations and measurements. The results of an analysis based on (5) are compared with measurements. Fig. 7 presents the experimental environment for verifying our analytical result in (5). In Fig. 7, the middle points of these four fluorescent lamps are located at coordinates (0, −0.21, 1.84), (0, −0.07, 1.84), (0, 0.07, 1.84), and (0, 0.21, 1.84), respectively. The origin point (0, 0, 0) is on the work surface (xy plane). All units of the x-, y-, and z-axes are in meters. Varying the position of the light meter (HS1010A) enables the illumination levels at different positions by a set of fluorescent lamps to be obtained.

The illumination by only one set of fluorescent lamps was measured in our laboratory at night. Referring to Fig. 7, the illumination in the z-axis was measured along the z-axis at different positions from the middle point of the set of fluorescent lamps below the work surface. Then, on the work surface, the illumination was measured along the x- or y-axis every 0.3 m. The measured results are compared with the results obtained by analysis. Fig. 8 shows the measured illumination levels and the ones determined analytically at different positions along the x-, y-, and z-axes, respectively. From Fig. 8, the difference between the analyzed illumination and the measured illumination is negligible. In the following, the analytical result in (5) is utilized to simulate illumination by all lamps in a room, and then, the energy saving is evaluated when the proposed smart control algorithm is used with the lighting systems.
C. Energy Saved by Lighting Using Smart Control

Fig. 9 displays the experimental environment for lighting in the classroom. The sun shines into the classroom from the right. Obviously, the illumination at the right side of the room (Zone 5) will be higher than that at the left side (Zone 1). According to the measurements, the natural light contributes to the illumination levels at the front and the rear of the classroom to slightly different degrees. The average illumination at the rear of the classroom is lower than that at the front of the classroom. The lighting circuits in a real classroom may not be designed as that in Fig. 9. However, to save power energy consumed by the lighting system, the lighting circuits in Fig. 9 can be reasonably designed as column-based circuits. Hence, Fig. 9 assumes that all lamps in each column belong to the same lighting circuit and can be controlled by an individual switch. Moreover, to demonstrate the superiority of the proposed smart control algorithm, simulations are carried out to evaluate the energy saving of the lighting system in Fig. 9. In our simulations, the analytical result in (5) is used to simulate the illumination by each lamp. However, the background illumination by natural light is measured, as shown in Fig. 10. Notably, to satisfy the minimum illumination requirement at all positions in the classroom, the smart control algorithm uses only the data concerning illumination at the rear of the classroom to control the lighting system. Accordingly, only the illumination data at the rear of the classroom are employed to evaluate performance. Additionally, in the simulations, no shading and dimming control is supported, i.e., $W = 0$ and $D = 1$. In Fig. 9, the classroom is divided into five zones, and their illumination levels under the smart lighting control are compared. Fig. 10 shows the illumination of each zone by natural light during daytime. According to the measurements, Zone 5 has the strongest illumination because it is the closest to the window on which light is incident. The illumination of Zone 5 by natural light always exceeds 500 lx, so no lighting circuit in Zone 5 needs to be turned on based on the smart control algorithm in Fig. 5. However, the lighting circuits in the other zones must be turned on to meet the minimum illumination requirement of 500 lx.

Using the analytical result in (5) and the measured data in Fig. 10, the illumination of the classroom in Fig. 9 under the smart lighting control is simulated. Since the proposed algorithm is heuristic, the result of the optimal solution that can minimize the power consumption of lighting systems and satisfy the minimum illumination requirement is also included. Fig. 11 shows the simulated illumination levels of Zones 1, 3, and 5, respectively, under the proposed smart control scheme and the scheme without smart control (all lamps ON). In Fig. 11, one average sample per hour is plotted from all simulated illumination data points, and the contribution to illumination by natural light is also included. In the proposed smart control scheme, the minimum illumination requirement L (lower threshold) is set to 500 lx, and the upper threshold H equals 700 lx. With reference to Fig. 11(a), the illumination of Zone 1 under the proposed smart control scheme is close to that when all lamps are ON.
This is because Zone 1 is the farthest from the window on which light is incident, so natural light contributes less to the illumination of Zone 1 than to that of any other zone. Thus, almost all the time, the lamps in Zone 1 must be turned on under the smart control. Accordingly, no significant difference exists between the smart control scheme and the one with all lamps ON. Referring to Fig. 11(a) and (b), the illumination of Zone 3 is always larger than that of Zone 1 when all lamps are ON. However, the illumination of Zone 3 remains almost the same as that of Zone 1 under the smart control, illustrating that only sometimes are the lamps at Zone 3 turned on under the smart control. Zone 5 is the nearest area to the window on which light is incident, so the natural light contributes more to the illumination of Zone 5 than to that of any other zone. Therefore, the lamps in Zone 5 rarely have to be turned on under the proposed smart control scheme. Accordingly, the illumination under the proposed smart control scheme is much less than that when all lamps are ON, as shown in Fig. 11(c). To show how much energy can be saved under the smart control, the absolute value of the total power consumed by lighting in the classroom is depicted in Fig. 12. The gap between the curves of the smart control scheme and that with all lamps ON represents the energy saving that can be achieved using The simulation results demonstrate that the proposed smart lighting control scheme provides significant energy saving. Moreover, the performance of the proposed smart control algorithm is almost coincident with that of the optimal solution, indicating that the proposed heuristic algorithm is near optimal. Next, define the energy saving ratio as follows. The energy saving ratio S is defined as the percentage of power cons
Fig. 13. Energy Saving Ratios on Sunny and Cloudy Days

The assumption that can be saved when the smart control scheme is employed, relative to the situation in which all lamps are ON. It is computed using the following equation: To clearly demonstrate the superiority of our proposed smart control scheme, the energy saving ratio is studied by simulation. Fig. 13 shows the energy saving ratios under the proposed smart control scheme on sunny and cloudy days. According to the simulation results, the energy saved on a sunny day is larger than that saved on a cloudy day. Even on cloudy days, the proposed smart control scheme reduces the energy consumed by lighting in the classroom by at least 40%, indicating that the proposed smart control mechanism is excellent. In Figs. 11–13, the packet failure rate of the sensed illumination data is assumed to be zero. However, packet error or loss is inevitable in a real environment. To counteract the packet loss problem, the proposed smart lighting control algorithm is designed as follows. Whenever a packet loss occurs, the lighting control algorithm must defer making a decision until new environmental data from all sensor nodes arrive correctly. That is, no decision can be made and the states of all lamps remain unchanged when any packet is lost. To study the impact of packet failure rate on the performance of the proposed smart lighting control, the illumination levels of Zone 3 under the scenarios with \(PF = 15\% \) and without \(PF = 0 \) packet failure are compared in Fig. 14 by simulation. The simulation environment is similar to that of Figs. 11–13 except that the illumination data loss event is simulated. Moreover, one instantaneous sample per 5 min is extracted and plotted from all simulated illumination data points. According to Fig. 14, packet loss in WSNs may lead to misses of tuning off lamps for saving power or turning on lamps for satisfying the minimum illumination requirement of 500 lx. Therefore, constructing a reliable data gathering and communication network such as the proposed WSN+PLC for the home automation control system is extremely required.

Fig. 14. Impact of Packet Failure Rate on the Performance of Smart Lighting Control (Natural Light on 2013/7/11)
IV. IMPLEMENTATION OF PROTOTYPE OF EXISTING SYSTEM SMART HOME CONTROL NETWORK

A. System Block Diagram
The block diagram of the smart home control system is composed of three parts—data collection, communication, and appliance control, as shown in Fig. 15. Data collection is realized using WSNs. The information thus obtained is sent by the WSN and relayed by the PLC and the IP network to the management station. After the environmental information is received, the management station determines the states of all home appliances to optimize the power consumption. Subsequently, the management station sends control commands to renew the states of all home appliances via the PLC. The proposed architecture, described earlier, simplifies the optimization problem of node placement in WSNs and mitigates the impact of wireless interference. Furthermore, the PLC/IP gateway, which connects the PLC and the IP networks, enables Internet access for the remote monitoring of the smart home network and the control of it in real time.

Fig. 15. System Block Diagram

Additionally, the proposed architecture is highly scalable since several PLC/IP gateways can be connected to the management station to extend the smart home control network, as shown in Fig. 15. The major tasks in constructing the proposed smart home control system include integrating the WSN coordinator with the PLC transceiver and integrating each home appliance switch with the PLC transceiver. Related electronic components that are required in constructing a smart home control network are described in subsequent sections.

B. PL 3120 Smart Transceiver
To counteract the impact of background noise in PLCs, the PL 3120 chip [23] is used as the PLC module herein. The PL 3120 smart transceiver is used for the following reasons. First, the PL 3120 smart transceiver uses narrow-band signaling and thus has the ability to communicate across transformers. This transceiver employs a dual-carrier frequency signaling technology and can automatically switch to the secondary communication frequency whenever the primary frequency is blocked by noise. In the worst case, the PL 3120 smart transceiver can retransmit data up to three times to ensure that the data are received correctly. Second, the PL 3120 smart transceiver uses a variant of the p-persistent CSMA medium access control (MAC) protocol that is called the predictive-persistent CSMA. Unlike the original CSMA, the predictive p-persistent CSMA protocol is dedicated to network control applications and generally operates on short data packets underbury traffic conditions. When the network is idle, all devices can transmit randomly over a minimum 16-slot period, which is called the randomizing window. As the network load increases, the randomizing window increases by a factor of a, where a ranges from 1 to 63. The PL 3120 transceiver uses a wide power supply range (+8.5 to +18 Vdc) and supports very low receive mode current consumption. Additionally, if, during transmission, the power supply voltage falls to a level that is insufficient to ensure reliable signaling, the transceiver stops transmitting until the power supply voltage rises to an acceptable level. These features allow the use of a power supply with a smaller current capacity required, yielding a reduction in the size, cost, and thermal dissipation of the power supply. However, since the input of the power supply is connected directly to the communication channel, a power supply may attenuate the communication signal and couple noise into the PLC transceiver. To preserve the full communication capability of the PLC transceiver, it is important to ensure that the power supply does not impair communication performance. Several “preverified” power supply options given in the data book of PL 3120 [23] can be considered.
The power consumption of the used PLC module in this work is less than 7.5W to control home appliances via the PLC, each home appliance switch must be integrated with a PLC transceiver. The PL3120 transceiver provides twelve I/O pins which can be configured to operate in one or more of the 38 predefined standard input/output modes [23]. Hence, there is no difficulty to enable it to interface with application circuits and home appliance switches using a small number of inexpensive components such as resistors and capacitors.

C. CC2530 ZigBee Devices
In this paper, the CC2530 ZigBee network processor (ZNP) [41], displayed in Fig. 16, is used to collect environmental information. CC2530ZNP supports several sensors, such as temperature, light, and motion sensors. The target board that is connected to the USB stick can be programmed with a coordinator sample application to become a WSN coordinator. The coordinator can set up the entire WSN network and configure related parameters. Each isolated WSN system can have a single coordinator. The coordinator initially sets the beacon signals to coordinate all nodes in the WSN. If the end device cannot receive or recognize the beacon signals, then it asks the coordinator to try again. After the end device has successfully communicated with the coordinator, it stays awake and sends data in a manner determined by the timer. The state of the system then switches between idle and transmission until the end device loses contact with the coordinator.

D. Integration of PLC and WSN
In the CC2530 ZigBee device, the microcontroller MSP430F2274 is mainly used to control the ZigBee device and related data communications among sensors, CC2530ZNP, and the USB stick. The ZigBee device provides a serial communication interface for data communications between the CC2530ZNP and the MSP430F2274 microcontroller. Therefore, the PLC transceiver can directly fetch environmental data from the appropriate I/O pins, such as pin 34 (Tx) and pin 35 (Rx), of the CC2530ZNP.

E. System Prototype
To demonstrate the feasibility of the proposed system architecture, a prototype is constructed, as shown in Fig. 17. The prototype consists of the ZigBee WSN, the PLC network, and the PLC/IP gateway (smart server) whose power consumption is less than 15 W.
Since home appliances must be connected to power lines, the management station can control and monitor the states of home appliances via the PLC/IP gateway. Therefore, using a PLC network as the backbone is a convenient way to realize a smart home control network. In the prototype, the ZigBee WSN is employed only to collect the environmental parameters, such as temperature and illumination. The sensor nodes detect these parameters and send them to the ZigBee coordinator via the WSN. Finally, these parameters are transferred to the management system via the PLC and the IP networks. Several experiments on the prototype system are conducted. First, the prototype system, which adopts the smart control algorithm that is presented in Fig. 5, is applied to the model house in Fig. 17. In the prototype system, no shading and dimming control is supported. Fig. 18 shows the developed monitoring application graphical user interface. The lower and the upper thresholds in the smart control algorithm are set to 500 and 700 lx, respectively. Initially, all three LED strip lamps in the model house are in the OFF state. According to the experimental results in Fig. 18, the lighting system takes approximately 10 s to become stable (at 18:58:17) after the test starts (at 18:58:07). All experimental tests show that the Prototype system works well and controls the LED lamps based on the measured illumination in the model house. Notably, the transition time to reach the control goal depends on the transmission period of ZigBee sensor nodes. A smaller transmission period can achieve a shorter transition time to reach the control goal. However, the battery lifetime of a sensor node decreases as the transmission period reduces. In our experiments, the transmission period of each sensor node is set to 3 s. Another way to shorten the transition time is to use the analysis result (5) in the smart control algorithm. When (5) is used, the smart control algorithm can automatically update the illumination and determine the states of all lamps quickly without resorting to several rounds of illumination gathering. However, the model of the lamps must be known first, and the sensor nodes must be fixed. Additionally, the aging of lamps may also lead to an estimation error of illumination. Subsequently, the experimental environment is changed from the model house to the classroom. In the classroom, the lighting system includes three lighting circuits, Circuits 1 to 3. Each lighting circuit consists of a column of lamps and is controlled by an independent switch. Circuits 1 and 3 are the farthest and the nearest to the windows, respectively. Three sensor nodes are equally spaced in the classroom to detect the illumination levels of locations near the windows and that far away from them. Fig. 18(a) shows the results of an experiment about the operation of the proposed smart lighting control algorithm on a rainy day. According to the results, the system may oscillate and need a transition period to become stable. Initially, all circuits are in the OFF state. Thus, the illumination at each sensor node is below $L (500 \text{ lx})$. Accordingly, the smart control algorithm immediately turns on Circuit 1. A similar process is performed for Circuit 2. Since the illumination of Node 3 is still less than 500 lx, Circuit 3 is also turned on at $t = 9 \text{ s}$ after the experiment starts. Thus, the illumination levels at all nodes exceed L. However, the illumination at Node 3 now exceeds $H (700 \text{ lx})$, so the system turns off Circuit 3, causing control algorithm on an (a) rainy day and a (b) cloudy day.

![Experimental Results Concerning Proposed Smart Lighting](image-url)
The illumination at Node 3 to fall to below 500 lx. The smart control algorithm in Fig. 5 returns to the state “Find Min lux and its position p^*” to ensure that the illumination levels at all nodes meet the minimum illumination requirement. Therefore, Circuit 3 is turned on, and the illumination at Node 3 is larger than H again. Since the parameter Count equals 1 at this moment, the smart control algorithm enters the state “Delay T.” Now, all circuits are ON, and the lighting system is stable. Since the parameter T is set to 60 s in this experiment, the algorithm leaves the state “Delay T” and restarts the procedure after about 60 s. To effectively eliminate the oscillation phenomenon and save more energy, the lighting system must support the dimming function. If the lighting system does not support the dimming function, then a longer delay T such as 10 min can be considered, or the hysteresis condition $Max > L + \Delta$, where Δ is the illumination contribution by a lighting circuit, can be added into the proposed smart lighting control algorithm to avoid the oscillation phenomenon. Another experiment is conducted in the same classroom on a cloudy day. Fig. 19(b) displays the experimental results. Initially, all circuits are in the OFF state, and the illumination levels at Nodes 1 and 2 are below L (500 lx) while that of Node3 is over H (700 lx). Hence, according to the smart control algorithm, only Circuits 1 and 2 are turned on. If Circuit 3 is turned on, the illumination of Node 3 reaches about 1500 lx. Obviously, turning on Circuit 3 wastes energy and increases the tiredness felt in people’s eyes. Therefore, a smart control system must ensure that the illumination levels at all positions exceed the minimum requirement while saving energy. All experiments conducted earlier demonstrate that both the prototype system and the proposed smart control algorithm work correctly and perform well, no matter what the weather is. To understand the communication performance of the prototype system, the packet delay and reliability are also measured. Three sensor nodes are evenly spaced in our laboratory, and the PLC+C coordinator is located at the center of our laboratory. Each sensor node transmits one packet every 3 s, and the payload of each packet only includes the sequence number and illumination information. Packets are originated by sensor nodes and then traverse the WSN link, the power line, and the IP network to the management station. To measure the end-to-end packet delay, one sensor node is connected to a PC via the USB port to capture the sending time of a packet. Packets from the other two sensor nodes can be viewed as the background traffic for contention. Packets finally arrive at the management station, and their arrival times can be recorded. Subsequently, the packet delay and reliability can be evaluated. Before the measurement, the clocks of the PC and the management station must be synchronized using the Network Time Protocol program or the IEEE 1588 Precision Time Protocol. Table II shows the measurement results. According to Table II, the packet failure rate is about 0.8%, and the average end-to-end packet delay is about 75 ms, since the packet is short and the network propagation delay is usually less than a microsecond in a smart home environment, the packet delay is mainly incurred by the MAC protocols of the WSN and the PLC.

V. PROPOSED SYSTEM

In this system, we use the power line (already exist in the home, industrial etc.,) for data communication. This system deals with the use of this technology over Pulse Width Modulation (PWM) networks in communication applications such as computer data communication and home/industrial device control. Operating limits and main difficulties encountered are underlined. Based on the requirements of the PWM network, new PLC modems are developed and tested. Experimental results presented in this system show the capacity of these modems to overcome the hostile environment due to the inverter and to guarantee reliable communication over the PWM network.

VI. CONCLUSION

This paper has designed a novel network architecture and a smart lighting control algorithm for smart homes. The proposed smart home control network employs the PLC as the network backbone and the WSN for data sensing. The proposed network architecture possesses the advantages of both WSNs and PLCs. It simplifies the problem of setting up relay nodes in WSNs and mitigates the impact of wireless interference. It is also highly scalable and can be applied to intelligent buildings. A prototype of the proposed smart home control network with the smart lighting control was implemented. Simulations and practical experiments were conducted to demonstrate that the implemented prototype system works well and that the proposed smart home control network provides an outstanding packet failure rate and considerable energy saving. Although numerical results have shown that the energy saving ratio in lighting is good, control of other home appliances, such as HVAC&R, must also be considered in future work to save more electrical energy. To fulfill the proposed solution in existing homes or buildings, some installation costs may be induced. For example, the cost of a digital switch with the PLC module is about several tens of U.S. dollars. As to the cost of a ZigBee device, it may be down to several U.S. dollars. The most expensive equipment in the proposed solution is the smart server (PLC/IP gateway) which costs about several hundreds of U.S. dollars. However, since a smart server can manage up to hundreds of devices, it is enough to use only one smart server for controlling lighting systems and home appliances in a home or a small building. Therefore, compared with the cost saving on electricity in the long term, the induced installation cost in the proposed solution is relatively low. Experimental results presented in this system show the capacity of these modems to overcome the hostile environment due to the inverter and to guarantee reliable communication over the PWM network.

REFERENCES

22. EIA Home Automation System (CEBus) Interim Standard IS-60 1992
41. A True System-on-Chip Solution for 2.4-GHz IEEE 802.15.4 and ZigBee Applications (Rev. B), CC2530 Datasheet, Feb. 2011.