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Abstract: In this article we define different type of statistically convergent, statistically null and statistically bounded double 

sequence spaces on a semi-normed space by Orlicz functions. We study their different properties like solidness, denseness, 

symmetricity, completeness etc. We obtain some inclusion relations. 
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An Orlicz function M is said to satisfy 2 –condition if there exists a constant K > 0 such that M (2u)   KM(u) for all 

values of u 0. 

1. INTRODUCTION 

 The notion of statistical convergence was introduced by Fast [7] and Schoenberg [17] independently. It is also found in 

Zygmund [21]. Later on it was studied by Fridy and Orhan [8], Maddox [10], Salat [16], Rath and Tripathy [15], Tripathy [19, 20] 

and many others. 

Throughout the article XE denotes the characteristic function of E. The notion of statistical convergence depends on the 

 

n
lim

n

1



1k
E )k(X  exists. 

A sequence (xn) is said to be statistically c  

k  })  

Throught a double sequence will be denoted by A = <ank> i.e. a double infinite array of elements ank

notion of statistical convergence for double sequences was introduced by Tripathy [20]. For this he introduced the notion of density 

of subsets of N  follows: 

A subset E of N   N is said to have density (E) if 

(E) = 
q,p

lim
pq

1

pn


qk

XE(n,k) exists. 

Throughout (X, q) will represent, a semi-normed space seminormed by q. 

An Orlicz function M is a mapping M : [0,  ) [0,  ) such that, it              is continuous, non-decreasing and convex 

with M(0) – 0, M(x) > 0, for x > 0 and M(x)   , as x  . 

__________________________ 

2. Definitions and Preliminaries 

 A double sequence A = <ank> is said to converge in Pringshcim’s to L if 

 
k,n

lim ank = L, where n and k tend to  , independent of each other. 

A double sequence <ank> is said to converge regularly if it converges in Pringsheim’s sense and in addition the following 

limits exist. 
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n
lim ank = Lk (k = 1, 2, 3, ...) 

and 

k
lim ank = Jk (k = 1, 2, 3, ...) 

Throughout the article w2(q), 
2
 (q), 

2c (q), 
2
0c (q), 

2
R c (q), R

2
0c (q) will denote the spaces of all, bounded, convergent 

in Pringsheim’s sence, null in Pringsheim’s sense, regularly convergent, regularly null X-valued double sequence spaces 

respectively.  

An X-valued double sequence <ank NN : q(ank 

– L)   

An X-valued double sequence A is said to be statistically regularly convergent if it converges in Pringsheim’s sense and 

the following statistical limits exist. 




n
limstat nka = kL  (k = 1, 2, 3, …) 

and 




k
limstat nka  = nJ  (n = 1, 2, 3, ...) 

An X- nk) > G}) = 

0. 

For M an Orlicz function, we now introduce the following double sequence spaces : 

2
 nk nk) w2(q) : 

k,n

sup 






 

r

a
qM nknk

<  , for some r > 0}, 

2c nk)w2(q):



k,n

limstat 














 

r

La
qM nknk

=0, for some r>0 and Lx} 

2
0c nk)w2(q) : 




k,n
limstat 















 

r

a
qM nknk

 = 0, for some r > 0}. 

A sequence <ank>  R
2c (M, q, nk>

2c  




k
limstat






















 

1

nnknk

r

La
qM  = 0, for n = 1, 2, 3, ….             …..(1) 




n
limstat






















 

2

knknk

r

Ja
qM  = 0, for k = 1, 2, 3, …                …..(2) 

A sequence <ank>(R
2
0c ) 

2
0R c nk>

2
0c n = Jk 

of X, for all n,kN. 

nkank>  E whenever    <ank>  nk> of scalars 

nk| 1 for all n,kN. 

A double sequence space E is said to be symmetric if <ank>  E implies )k()n(a 
  

N. 

A double sequence space E is said to be sequence algebra if <ankbnk>  E, whenever <ank>, <bnk>   E. 

A double sequence space E is said to be monotone if it contains the canonical preimages of all its step spaces. 

A double sequence space E is said to be convergence free if <bnk>  E, whenever <ank>  E and ank nk  

Remark 1 : A sequence space E is said implies E is monotone. 

The zero single sequence will be denoted by    and the zero duble sequence will be denoted 

by 



































.....

.....

.....

. Throughout e = (1, 1, 1, …..) and   ek = (0, 0, ….., 1, 0, 0, …..), where the only 1 appear at the place 

Throughout the article 
2c 2

0c 2c )B (M, ,                    (
2
0c )B 2c )R 

2
0c )R 2c )BR 2

0c )BR statistical 
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null in Pringsheim’s sense, bounded statistically convergent in Pringsheim sense, bounded statistically null, bounded regularly 

convergent, bounded regularly null X-valued double sequences defined by Orlicz function respectively. 

3. Main Results 

The proof of the following result is a routine verification in view of the existing technique. 

Theorem 1.  Z = 
2c , 

2
0c , (

2c )B, (
2
0c )B, (

2c )R, (
2
0c )R, (

2c )BR, (
2
0c )BR and 

2
  are 

linear spaces. 

Theorem 2. The spaces Z(M, q,  ), where Z = (
2c )B, (

2
0c )B, (

2c )BR,            (
2
0c )BR and 

2
  are seminormed spaces, 

seminormed by 

f(<ank>) = inf





































 1

a
qMsup:0 nknk

k,n

. 

Proof. Since q is a seminorm, so we have f(A)  0 for all A : f(
2 ) = 0 and f f(A) for all scalar . 

Let <ank > and <bnk> (
2c )B (m, q,  ). There exist 1 , 2 > 0 such that 




























1

nknk

k,n

a
qMsup    1 

and 




























2

nknk

k,n

b
qMsup    1 

1 2. The we have, 

























 nknknknk

k,n

ba
qMsup    













21

1  


























1

nknk

k,n

a
qMsup  













21

2



























2

nknk

k,n

b
qMsup  

1 2 > 0, so we have 

f(<ank> + <bnk>) = 





































 1

ba
qMsup:0inf nknknknk

k,n
21  

= 







































 1

a
qMsup:0inf

1

nknk

k,n
1








































 1

b
qMsup:0inf

2

nknk

k,n
2  

= f(<ank> + <bnk>). 

Hence f is a seminorm. 

Theorem 3. Let (X semi normed 
2c )B, (

2
0c )B, (

2c

)BR, (
2
0c )BR, and 

2
  are complete semi-normed spaces semi normed by f. 

Proof. We prove the theorem for space (
2c )B  established following 

similar technique. Let Ai = (
i
nk

i
nka ) be a Cauchy sequence in (

2c )B following: 

(i) 
i
nk

i
nka  nknka , as i  , for each (n, k) NN 

(ii) ai a, as i    , where stat-lim 
i
nka  = ai, for each iN. 

(iii) nknka


stat a (relative to M). 

0 > 0, choose r > 0 such that M 








3

rx0  1 and M0N be such that 
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f 




 

j
nknk

i
nknk aa  

0rx


, for all i, jm0. 

By the definition of f we have, 


















































 



3

rx
M1

aa

aa
qM 0

j
nk

i
nk

j
nknk

i
nknk

f

,   for all i, jm0. 

    j
nknk

i
nknk aaq   < 

3

rx0
.

0rx


 = 

3


, for all i, jm0.           …..(3) 

Hence 
i
nknka  is a Cauchy sequence in X for all (n, k) NN. Since X is complete, so there exists nka X, such 

that 
i
nka  nka , as i  , for each               (n, k) NN. 

(ii) We have stat-lim
i
nka = ai for each iN. Thus there exists a subset            EiN Ei) = 1, for each i

 



























 

r

aa
qM i

i
nk  M 







 

r3
, for all (n, k) Ei, for each iN and some r > 0. 

  ii
nk aa   < 

3


, for all (n, k) Ei, for each iN and by continuity of M.      ….(4) 

Let i, jm0 and (n, k) Ei Ej. Then we have 

q(ai aj)  q  ii
nk aa   + q  j

nk
i
nk aa   + q  ji

nk aa   

< 
3


 + 

3


 + 

3


  

Hence ia  is a Cauchy sequence in X, which is complete. Thus ia  converges in X and let ii alim   = a.  

(iii)For 1 > 0 given, let im0 and r > 0 be so chosen that M 






 

r
 < 1  and the following hold. From (ii) we have a subset 

ENN such that 

q  ii
nk aa   < 

3


. 

By (i) we have q  i
nknk aa   < 

3


, for all im0. 

By (ii) we have q(ai ) < 
3


, for all im0. 

Hence for all im0 and for all (n, k)  

q(ank  q  i
nknk aa   + q  ii

nk aa   + q(ai

3


 + 

3


 + 

3


  

 














 

r

aa
qM nk M 







 

r
 1, for some r > 0 and all (n, k)   

 stat-lim ank = a. 

Hence <ank> (
2c )B  

Thus (
2c )B plete semi normed space. 

Proposition 4. The spaces 
2
0c 2

0c )BR 
2
0c )B    (

2
0c )R , 

2


2
  

(M, q, l) are solid and hence are monotone. 

Proof. nk ank | 1, for all     n, kN. 
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Then the proof for 
2
0c (M, q,  ), (

2
0c )BR (M, q,  ), (

2
0c )B (M, q,  ),              (

2
0c )R (M, q,  ), 

2
 (M, q,  ) and 

2
 (M, q,  ) are obvious in view of the following inequality. 

























 nknknk a
qM  
























 nknka
qM , for all (n, k) K. 

The rest of the proof of first part follows from Remark 1. 

Proposition 5. The spaces Z(M, q,  ) where Z = 
2c ,  

2
0c , (

2c )B, (
2
0c )B,       (

2c )R, (
2
0c )R, (

2c )BR, (
2
0c )BR, 

2
  

are not symmetric. 

The above result follows from the following examples. 

Example 1. Let X = c, the class of convergent single sequences and           M(x) = xp, p 1 and q(x) = supi|xi|, for x = (xi) 

c. Define <ank> by  

ank = 









.Otherwise

Nknallfor,
 

Let <bnk> be a rearrangement of <ank>, defined as 

bnk = 









.Otherwise,

,Nnallandevenkallfor,
 

Let <bnk> be a rearrangement of <ank>, defined as follows 

bnk = 













.Otherwise

Nnallforand,oddiskif,
2

1k

  

Then ank >   
2
 (M, q,  ), but <bnk >

2
 (M, q,  ). 

Hence, 
2
 (M, q,  ) is not symmetric. 

Theorem 6. Let M and M1 be two Orlicz functions, then Z(M, q,  )Z(M0M1, q,  ) for Z = 
2c , 

2
0c , (

2c )B, (
2
0c )B, 

(
2c )R, (

2
0c )R, (

2c )BR, (
2
0c )BR and 

2
 (M, q,  ). 

Proof. We prove it for the case Z = 
2
0c

( nknka ) 2
0c (M1,  ). Then there exists a subset       K

NN  
















 

r

a
qM nknk

1 K. 

0 














 

r

a
qM nknk

1  

Hence, ( nknka ) >  2
0c (M0M1,  ) 

Thus 
2
0c (M1, q,  )  

2
0c (M0M1, q,  ). 

Theorem 7. If M and M1 are two functions then 

Z(M, q,  ) Z(M2, q,  )Z(M1 + M2, q,  ) 

For Z = 
2c , 

2
0c , (

2c )B, (
2
0c )B, (

2c )R, (
2
0c )R, (

2c )BR, (
2
0c )BR, 

2
 . 

Proof. We prove the result for 
2c (M, q,  ). The other cases can be established following similar technique. 

Let ( nknka ) 2c (M1, q,  ) 2c (M2, q,   

Then there exist subsets K and D of N –  
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




















 

1

nknk
1

r

La
qM  < 

2


, for all (n, k) K, for some r1 > 0, 

and 

 





















 

2

nknk
2

r

La
qM  < 

2


, for all (n, k) D, for some r2 > 0. 

Let r = max{r1, r2}. Then for all (n, k) (K D) we have  

(M1 + M2) 














 

r

La
q nknk  





















 

1

nknk
1

r

La
qM  + 






















 

2

nknk
2

r

La
qM   

Hence ( nknka )(M1 + M2, q,  ). 

This completes the proof. 

The proof of the following result is a consequence of Theorem 6. 

Corollary 8. Let M be an Orlicz function then we have Z(q)Z(M, q,  ) for Z = 
2c , 

2
0c , (

2c )B, (
2
0c )B, (

2c )R, (

2
0c )R, (

2c )BR, (
2
0c )BR and 

2
 . 

The proof of the following result is a routine work. 

Theorem 9. Let M be an Orlicz function, q1, and q2 be seminorms. Then 

(i) Z(M, q1,  ) Z(M, q2,  )Z(M, q1 + q2,  ) 

(ii) If q1 is stronger than q2, then Z(M, q1,  )Z(M, q2,  ) for Z = 
2c , 

2
0c ,        (

2c )B, (
2
0c )B, (

2c )R, (
2
0c )R, (

2c )BR 

and 
2
 . 

The following result can be proved by using the standard technique. 

Theorem 10. Let M be an Orlicz function. Then Z(M, q,  ) 2
 (M, q,  ) for Z = (

2c )B, (
2
0c )B, (

2c )BR, (
2
0c )BR 

and the inclusions are strict. 

The following result is a consequence of the above Theorem and Theorem 3. 

Corollary 11. The spaces Z(M, q,  ) for Z = (
2c )B, (

2
0c )B, (

2c )BR, (
2
0c )BR are a nowhere dense subset of 

2
 . 

Theorem 12. The spaces Z(M, q,  ) where Z = 
2c , 

2
0c , (

2c )B, (
2
0c )B,          (

2c )R, (
2
0c )R, (

2c )BR, (
2
0c )BR and 

2
  are not convergence free. 

The above result is clear from the following example. 

Example 3. Let M(x) = xp, for some 1  p  , X =  , q(x) = supi|xi|, for     x = (xi)   . Then the double sequence 

< ank > defined as ank = (k , k , k , …..), for all n, k N belongs to all the spaces. Consider the sequence < bnk > defined as   bnk 

= (k, k, k, …..), for all n, k N. Then <bnk> does not belong to any of these spaces. Hence none of the spaces is convergence free. 

Proposition 13. The spaces Z(M, q,  ), for Z = 
2c , 

2
0c , (

2c )B, (
2c )R,           (

2c )BR are not monotone and hence are 

not solid. 

Proof. The first part follows from the following example. The second part follows from Remark 1. 

Example 4. Let M(x) = x, X = C and q(x) = |x|. Then the double sequence       ( nkank), defined by ank = 1, for all n, kN 

belong to Z(M, q,  ), for Z = 
2c , (

2c )B, (
2c )R, (

2c )BR. 

Consider its pre-image ( nkbnk) defined as 

 nkbnk = 









.Nnallfor,oddkfor,1

,Nnallfor,evenkfor,0
  

Then ( nkbnk) does not belong to any of these spaces. 
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Remark 2. Let (X, ||.||) be a normed linear space. Then the spaces Z(M, ||.||), for Z = (
2c )B, (

2
0c )B, (

2c )BR, (
2
0c )BR, and 

2
  will be normed linear spaces normed by 

f( nknka

























 nknk

k,n

a
Msup   1}.  

Remark 3. If X is a Banach space then it is clear that the spaces Z(M, ||.||), for Z = (
2c )B, (

2
0c )B, (

2c )BR, (
2
0c )BR and 

2
  are Banach spaces under the norm.  
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