Abstract: In this paper, Stochastic Economic Load Dispatch problem with Multiple Fuels is solved using Pareto distribution with local convex optimization by bacterial foraging approach. Bacterial foraging optimization is swarmed intelligence technique used to solve the problem of the power system. The algorithm is based on the group foraging behavior of Escherichia coli (E-coli) bacteria present in the human intestine. This social behavior of E-coli bacteria has been used to solve optimization problems. This paper presents a BFO to solve Economic load dispatch (ELD) problems. The result is obtaining from test system with ten generating units. In this paper performance of the BFO is compared with Particle swarm optimization (PSO). The result clearly shows that the proposed method gives a better optimal solution as compared to the other methods.

Keywords: Economic Load Dispatch (ELD), Multiple Fuel Generation, Bacterial Foraging Optimization (BFO).

I. INTRODUCTION

In the power system planning and operation, the economic load dispatch (ELD) is meant the security of low-cost generating power as load demands according to the system constraints. This is one of the most critical issues that have been researched recently. Economic load dispatch (ELD) is a very important problem to power system operation since this task decides the economy of the power system. In fact, the electricity generation fuel cost of a power system mainly using fossil fuel to produce electricity is very high compared to other sources. Furthermore, the fossil fuel is not plentiful and exhausted in the near future. Consequently, optimal operation of thermal plants has played a significantly important role so far. In the past, the fuel cost curve of the thermal unit is expressed as a single quadratic function because each considered unit used only one fuel and the valve-point loading effect was not taken into account. Nowadays, the cost curve is more complicated as considering multiple fuels and valve-point loading effect [1]. Several methods have been successfully applied to ELD problem with multiple fuel options so far including lambda-iteration [2], Hopfield neural network (HNN) [3], Enhanced Lagrangian neural network (ELANN) [1], augmented Lagrange Hopfield network (ALHN) method [4], approximately equivalent function based ALHN (AEALHN) [5]. Recent years, many meta-heuristic algorithms and Hopfield network-based methods have attracted many attentions from a researcher in applying to the economic load dispatch where multiple fuel options are considered. These methods include Particle swarm optimization (PSO) [6], Differential Evolution (DE) [7], Self-Adaptive Differential Evolution (SDE) [8], Genetic algorithm (GA) [9-10] and evolutionary programming (EP) [11]. PSO can produce high-quality solutions in short period time.
However, the method is sensitive to the selection of control parameters and it is not very efficient for nonconvex objective function. DE is a powerful search tool for a global optimal solution. Nevertheless, the DE method is still slow for applying to large-scale problems. Compared to DE, SDE is a good method to solve ELD problem with Valve-Point Effects. Among the methods, GA is the weakest one since it is vastly dependent on the fitness function and sensitive to the mutation and crossover operations and must spend long time searching solution. The manners lead to the limitation of the GA on the complex systems. EP has a high performance for optimization problems but it is as good as DE and PSO. However, the disadvantages of the method are that the values of lambda and updated step size are randomly chosen initially. This can lead to a non-optimal solution or non-convergence. The best solution has been found after the method has been performed 93 independent runs with various values of lambda and fuel type. The computational time for each trial is short but total time for the whole is long. Enhanced Augmented Lagrange Hopfield Network (ALHN) [4] solves ELD problem in two phases and gains good solutions and short simulation time. However, the gained simulation results depend on setting a large number of parameters. The Differential Evolution (DE) [5] algorithm is found to be a powerful evolutionary algorithm for global optimization in many real problems. Self-Adaptive Differential Evolution (SDE) [6] is a good method to solve ELD problem with valve-point effects. The application of Hopfield neural network(HNN) [7] with the merit of simplicity created difficulties in handling some kinds of inequality constraints. For solving the problem by the enhanced Lagrangian neural network (ELANN) [1] method, the dynamics of Lagrange multipliers including equality and inequality constraints were improved to guarantee its convergence to the optimal solutions, and the momentum technique was also employed in its learning algorithm to achieve the fast computational time. Particle Swarm Optimization [8] (PSO) is one of the modern heuristic algorithms and has a great potential to solve complex optimization problems. PSO algorithm is highly robust yet remarkably simple to implement. Thus, it is quite pertinent to apply the PSO with new modifications to achieve better optimization and handle the power system problems efficiently [9].

A hierarchical approach based on the numerical method (HNUM) [9] is one of conventional method which is non-effective for solving on smooth fuel cost function. With a parallel searching mechanism, the improved evolutionary programming (IEP) [11] method has a high probability of finding an optimal solution. By combining equivalent function and Lagrange multiplier theory or Hopfield Lagrange network, two methods including Lambda Iterative (LI) and Hopfield Lagrange network have been proposed for solving economic dispatch [12]. The two methods have obtained good solution quality; however, the applicability of the two ones is restricted on the system with valve point effect on thermal units. The genetic algorithm (GA) [13] is critically dependent on the fitness function and sensitive to the mutation and crossover rates, the encoding search space curve leading toward solutions. The cuckoo search algorithm (CSA) developed by Yang and Deb in 2009 [14] is a new meta-heuristic algorithm for solving optimization problems inspired from the obligate brood parasitism of some cuckoo species by laying their eggs in the nests of other host birds of other species. To verify the effectiveness of the CS algorithm, Yang and Deb compared its performance with particle swarm optimization (PSO) and GA for ten standard optimization benchmark functions. This paper focuses on bacterial foraging optimization algorithm to solve the problem of economic load dispatch problem including valve-point effects.

II. PROBLEM FORMULATION
The concept behind economic load dispatch problem is to minimize the total fuel cost at thermal power plants subjected to the operating constraints of a power system [8]. Therefore, it can be formulated mathematically with a goal function and equality and inequality constraints.

Objective function:

\[
Min F_T = \sum_{i=1}^{NG} F_i(P_{Gi}) = \sum_{i=1}^{NG} \left(a_i P_{Gi}^2 + b_i P_{Gi} + c_i \right)
\]

Where

- \(F_T \) is the total generation cost ($/hr)
- \(F_i \) is the fuel-cost function of generator i ($/hr)
- \(NG \) is the number of generators
- \(P_{Gi} \) is the real power output of generator i (MW) and \(a_i, b_i \) and \(c_i \) are the fuel-cost coefficients of generator

The basic constraints are the real power balance and the real power operating limits
\[
\sum_{i=1}^{N_G} P_{Gi} = P_{\text{Load}} + P_{\text{Loss}}
\]

\[
P_{Gi} \text{ min} \leq P_{Gi} \leq P_{Gi} \text{ max} \quad i = 1, 2, 3, \ldots, N
\]

Where

- \(P_{\text{Load}}\) is the total load in the system (MW)
- \(P_{\text{Loss}}\) is the network loss (MW)
- \(P_{Gi}^{\text{min}}\) & \(P_{Gi}^{\text{max}}\) are the minimum and maximum power generation limits of generator

Generally, large turbogenerators have a set of valves at the inlet to the steam turbine. With the increase in power demand, these valves are opened sequentially. The throttling loss in a valve is large when it is just opened and is small when it is fully opened. This is known as valve-point loading effect which makes the cost curve highly nonlinear and nonconvex as shown in Fig. 1. This phenomenon can be simulated using a recurring rectified sinusoidal function superimposed with the conventional quadratic cost function. The total cost of generation can be expressed as:

\[
\text{Min} F = \sum_{i=1}^{N_G} \left(a_i P_{Gi}^2 + b_i P_{Gi} + c_i \right) + e_i \sin f_i \left(P_{Gi}^{\text{min}} - P_{Gi} \right)
\]

Where \(e_i, f_i\) are constants from the valve point effect of the generating unit \(i\).

III. SIMULATION AND METHODOLOGY

BFO method was invented by Kevin M. Passino [12] motivated by the natural selection which tends to eliminates the animals with poor foraging strategies and favor those having successful foraging strategies. The foraging strategy is governed basically by four processes namely Chemotaxis, Swarming, Reproduction, Elimination and Dispersal [14].

A. Chemotaxis

Chemotaxis process is the characteristics of movement of bacteria in search of food and consists of two processes namely swimming and tumbling. A bacterium is said to be 'swimming' if it moves in a predefined direction, and 'tumbling' if moving in an altogether different direction. Let \(j\) be the index of chemotactic step, \(k\) be the reproduction step and \(l\) be the elimination dispersal event. Let \(i\) be the position of \(i\)th bacteria at \(j\)th chemotactic step, \(k\)th reproduction step, and \(l\)th elimination dispersal event. The position of the bacteria in the next chemotactic step after a tumble is given by If the health of the bacteria improves after the tumble, the bacteria will continue to swim in the same direction for the specified steps or until the health degrades.

B. Swarming

Bacteria exhibits swarm behavior i.e. healthy bacteria try to attract other bacteria so that together they reach the desired location (solution point) more rapidly. The effect of Swarming is to make the bacteria congregate into groups and move as concentric patterns with high bacterial density. Mathematically swarming behavior can be modeled as [4]:

© 2017, www.IJARIIT.com All Rights Reserved
IV. RESULTS AND ANALYSIS
REFERENCES

