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ABSTRACT 
Drug repurposing, the process of identifying new therapeutic uses for existing drugs, offers a promising strategy to accelerate 

drug development by significantly reducing costs, time, and risks compared to de novo drug discovery. The increasing 

availability of large-scale biomedical data has catalysed the development of computational approaches to systematically identify 

and prioritise repurposing candidates. This survey reviews the state-of-the-art computational methodologies, with a particular 

focus on network medicine and machine learning-based techniques. We discuss key approaches such as pathway-based analysis, 

network proximity, matrix factorisation, and the growing application of deep learning, particularly Graph Neural Networks 

(GNNs), which leverage complex biomedical networks. The paper explores how these methodsutilisee heterogeneous data—

including drug-target interactions, gene-disease associations, and molecular structures—to generate repurposing hypotheses. 

Furthermore, we outline the primary challenges in the field, including data integration, model generalizability, and the need 

for explainability, and discuss future directions, such as the integration of multi-modal data and the development of more 

sophisticated, interpretable AI models. 

Keywords: Computational Drug Discovery, Graph Attention Networks, Network-Based Prediction, Heterogeneous Graphs, 

Machine Learning, Therapeutic Discovery. 

I. INTRODUCTION 

The development of new pharmaceuticals, or de novo drug discovery, is a notoriously challenging process. It is characterized by 

immense costs, protracted timelines, and a high risk of failure. On average, bringing a single new drug to market can take 10-15 

years and cost upwards of $2.5 billion [1]. A significant portion of this cost and time is consumed by extensive preclinical testing 

and multi-phase clinical trials required to establish the safety and efficacy of a new molecular entity. The attrition rate is daunting; 

the vast majority of candidate molecules fail during development, with many failing in latestage clinical trials after hundreds of 

millions of dollars have already been invested [2]. This inefficient paradigm creates significant barriers to addressing unmet medical 

needs, particularly for rare diseases where small patient populations make it difficult to recoup development costs, and for emerging 

public health crises that demand rapid therapeutic solutions [1], [3]. 

In response to these challenges, drug repurposing (also known as drug repositioning) has emerged as a critical and effective 

alternative strategy. Drug repurposing is the process of identifying new therapeutic uses for drugs that have already been approved 

for other indications [1]. Because these drugs have already undergone extensive safety and pharmacokinetic profiling, they have a 

well-established safety record in humans. This significantly de-risks the development process, allowing repurposed drugs to bypass 

early-stage clinical trials and enter directly into Phase II or III trials for the new indication. Consequently, the timeline for 

development can be reduced to as little as 3 − 12 years, and the associated costs can be a fraction of those for a de novo drug [9]. 

Historically, many successful instances of drug repurposing were the result of serendipity-fortuitous clinical observations of 

unexpected side effects. Prominent examples include thalidomide, which was repurposed for treating multiple myeloma after being 

withdrawn for its teratogenic effects. Another well-known case is minoxidil, an antihypertensive medication that was found to 

promote hair growth, leading to its second life as a topical treatment for baldness. Similarly, aspirin, originally an analgesic, is now 

widely used in low doses as an antiplatelet agent to prevent cardiovascular events. However, relying on chance is not a sustainable 

strategy for modern medicine. The contemporary need is for systematic, predictable, and scalable methods to identify repurposing 

opportunities, especially for complex, multifactorial diseases that do not follow the traditional "one-drug-one-gene-one-disease" 

model [4]. 
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The shift from serendipitous to systematic drug repurposing has been driven by a revolution in data and computation. The explosion 

of "big data" in biomedicine-including largescale chemical genomics, proteomics, transcriptomics, and vast databases of gene-

disease associations-has provided the raw material for building comprehensive models of human biology [5], [6]. This data-rich 

environment has paved the way for the application of sophisticated computational techniques rooted in network medicine and 

artificial intelligence. These methods model the complex web of interactions between drugs, protein targets, genes, and diseases to 

predict therapeutic effects that are not immediately obvious [7], [8], [4]. By analyzing these intricate networks, computational 

approaches can generate high-quality, testable hypotheses for drug repurposing at a scale and speed unattainable through traditional 

experimental methods alone. 

This survey provides an overview of these prominent computational methodologies, with a focus on network-based and deep 

learning approaches, and discusses the current challenges and future trends that will continue to shape this dynamic field. 

II. RELATED WORKS 
The computational drug repurposing landscape is diverse, with methods ranging from network analysis to advanced deep learning 

models. These approaches leverage the principle that relationships between biological entities can be computationally inferred to 

predict novel therapeutic uses for drugs. 

A. Network Medicine and Pathway-Based Approaches 

Network medicine provides a powerful framework for drug repurposing by modeling the complex interplay between diseases, genes, 

and drugs within a biological network, typically a protein-protein interaction (PPI) network. The central idea is that diseases are not 

caused by single-molecule defects but by perturbations in a complex network of interactions. 

Proximity and Pathway Analysis: A key concept is the disease module, a localized network neighborhood of proteins associated 

with a specific disease. The therapeutic effect of a drug is often correlated with the proximity of its protein targets (𝑇) to the 

corresponding disease module (𝑆). This proximity is frequently quantified by the "closest distance" 𝑑𝑐(𝑆, 𝑇), which measures the 

average shortest path length from each drug target to the nearest disease protein in the network [9], [7]. It is formally defined as: 

𝑑𝑐(𝑆, 𝑇) =
1

|𝑇|
∑  

𝑡∈𝑇

 min
𝑠∈𝑆

 𝑑(𝑠, 𝑡) (1) 

where 𝑑(𝑠, 𝑡) is the shortest path length between protein 𝑠 and target 𝑡. To assess statistical significance, this distance is often 

converted into a 𝑍-score by comparing it to a reference distribution of distances between random sets of proteins of the same size 

and degree: 

𝑍 =
𝑑𝑐(𝑆, 𝑇)observed − 𝜇𝑑𝑐(random)

𝜎𝑑𝑐(random)

(2) 

A significantly negative 𝑍-score indicates that the drug's targets are closer to the disease module than expected by chance, suggesting 

a potential therapeutic relationship. Marín Tercero et al. [7] applied this principle to schizophrenia, while Otero-Carrasco et al. [9] 

used it to prioritize drugs based on their proximity to disease-associated biological pathways. 

Pattern Analysis in Specific Contexts: Computational methods are also used to analyze existing repurposing successes to uncover 

underlying biological patterns. In the context of rare diseases, Otero-Carrasco et al. [9] studied orphan drugs and found that 

repurposing often occurs between two different rare diseases. Their analysis revealed that diseases successfully treated by the same 

repurposed drug tend to exhibit high phenotypic similarity (i.e., share a significant number of symptoms), suggesting that shared 

clinical manifestations can be a strong indicator for repurposing potential. 

Explainable Network Models: To address the "black box" nature of some computational methods, certain models prioritize 

explainability. Castiglione et al. [11] developed an approach based on biased random walks over a knowledge graph of drug-gene-

disease associations. By modeling the system as an ergodic Markov process, the method not only recommends drugs but can also 

reveal the most probable paths through the network that led to the recommendation. The recommendation score for a drug-disease 

pair after an 𝑙-step walk is derived from the 𝑙th  power of the transition matrix, making the process transparent and traceable. 

Multi-layered Recommender Systems: More complex systems integrate multiple data types into a single framework. Wang et al. 

[7] developed ANTENNA, a multi-layered recommender system that models drugs, genes, and diseases in distinct but 

interconnected network layers. It uses a tri-factorization-based collaborative filtering algorithm to infer novel genome-wide 

chemical-gene associations. This information is then integrated with a Random Walk with Restart (RWR) algorithm to predict and 

assess the statistical reliability of novel drug-disease associations, leading to the successful identification of diazoxide as a potential 

therapy for triplenegative breast cancer. 

B. Machine Learning and Deep Learning Methods 

With the growth of large-scale biomedical data, machine learning and deep learning have become central to drug repurposing. 

Matrix Factorization: These techniques, common in recommender systems, treat the problem as completing a sparse matrix of 

known drug-disease associations. Ceddia et al. [2] proposed an innovative method based on Non-negative Matrix Tri-Factorization 

(NMTF). Given an association matrix 𝑅𝐴𝐵 between drugs ( 𝐴 ) and diseases ( 𝐵 ), NMTF approximates it as the product of three 

lower-dimensional matrices: 

𝑅𝐴𝐵 ≈ 𝑅̂𝐴𝐵 = 𝐺𝐴𝑆𝐴𝐵𝐺𝐵
𝑇 (3) 

The reconstructed matrix 𝑅̂𝐴𝐵 contains predicted scores for unknown associations. A key contribution of their work is an 

enhancement strategy where they enrich the input matrix by using a shortest-path analysis on the PPI network to infer novel, indirect 

drug-protein interactions. The weight of these inferred associations is decayed exponentially with path length |𝑃𝑎𝑏|, using a factor 

𝛼 : 

𝑅𝐴𝐵
′ [𝑎, 𝑏] = 𝛼|𝑃𝑎𝑏|−1 (4) 

This allows the model to leverage broader network context and significantly improves prediction performance. 

Graph Neural Networks (GNNs): GNNs are purpose-built for learning from graph-structured data and have become a leading 

methodology for drug repurposing. They operate via a "message passing" scheme, where each node (e.g., a drug or protein) 

iteratively updates its feature vector (embedding) by aggregating information from its neighbors. A simplified representation of a 

single GNN layer is: 
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ℎ𝑣
(𝑙+1)

= UPDATE(𝑙) (ℎ𝑣
(𝑙)

, AGGREGATE(𝑙) ({ℎ𝑢
(𝑙)

: 𝑢 ∈ 𝑁(𝑣)}))                     (5)  

where ℎ𝑣
(𝑙)

 is the embedding of node 𝑣 at layer 𝑙, and the UPDATE/AGGREGATE functions are learnable neural networks. After 

several layers, the final embeddings capture both the node's initial features and its topological environment. Artiñano-Muñoz et al. 

[10] (DRAGON) and Ayuso-Muñoz et al. [6] demonstrate the power of initializing this process with rich features ℎ𝑣
(0)

, using 

embeddings from drug molecular structures and protein sequences to improve the accuracy of predicting new drug-disease links. 

Advanced GNN Architectures: Researchers are developing more sophisticated GNNs to better reflect biological complexity. 

Moving beyond the single-drug/single-protein paradigm, Bacciu et al. [3] designed a deep graph network that predicts a drug's 

efficacy against a set of multiple protein targets considered jointly. This approach better captures the reality that drugs often act on 

functionally related protein ensembles. Li and Hu [11] proposed a hybrid framework that combines a multimodal GNN (operating 

on a heterogeneous graph of drugs, proteins, diseases, and pathways) with a parallel structural learning module that processes 

molecularlevel information directly. The predictions from both modules are then ensembled for a more robust result. Park et al. 

[12], while focused on predicting side-effect frequency, introduce a "dual representation learning" technique that embeds both drugs 

and diseases into a common vector space, where the prediction score is a function of the similarity (e.g., dot product) between their 

embeddings: 
 score ∝  embedding 

𝑑𝑟𝑢𝑔
⋅  embedding 

𝑑𝑖𝑠𝑒𝑎𝑠𝑒
(6) 

C. Feature Representation and Data Sources 

The performance of these computational models is highly dependent on the quality of input data and feature representations. Drug 

features are often derived from their chemical structures using tools like RDKit [13] to generate extendedconnectivity fingerprints 

(ECFPs) [14]. For proteins, features can be derived from amino acid sequences, with advanced models using embeddings from large 

language models trained on biological sequences, such as ESM [15]. These features are integrated with large-scale knowledge bases 

like DisGeNET [6], which consolidates information on gene-disease associations, and comprehensive platforms like DRIVE [16], 

which provide a unified interface for disease visualization and running various repurposing algorithms. 

D. Dominant Methodologies in Computational Drug Repurposing 

The reviewed literature reveals a clear trend towards integrated, data-driven methodologies that model complex biological systems. 

Two dominant themes emerge: the centrality of network-based representations and the increasing sophistication of machine learning 

models to learn from them. 

Network-Based Inference: The foundational methodology across many modern approaches is the representation of biomedical 

knowledge as a graph. This includes PPI networks, drug-target networks, and heterogeneous graphs linking multiple entity types 

(drugs, genes, diseases, pathways) [9], [11], [3]. Key analytical techniques performed on these networks include: 

i. Proximity and Distance Metrics: Calculating the shortest path length between drug targets and diseaseassociated genes in 

a PPI network is a common and effective measure of therapeutic potential [7], [7]. 

ii. Random Walks: Algorithms based on random walks explore network topology to rank potential drug-disease associations, 

with some methods providing explainability by tracing the most probable paths [11]. 

iii. Link Prediction: The task is often framed as predicting missing links (edges) between drug and disease nodes in a 

heterogeneous graph. 

iv. Deep Learning on Graphs: GNNs have become the state-of-the-art for link prediction tasks in this domain [6], [11]. Their 

primary advantage is the ability to learn node embeddings that capture both the node's intrinsic properties (e.g., a drug's 

chemical structure) and its topological context within the broader network. The most successful recent models tend to be 

multimodal, integrating diverse feature types such as molecular graphs, protein sequences, and pathway information into 

the GNN architecture [11], [12]. 

III. PROPOSED METHODOLOGY 
The reviewed literature reveals a clear trend towards integrated, data-driven methodologies that model complex biological systems. 

Two dominant themes emerge: the centrality of network-based representations and the increasing sophistication of machine learning 

models to learn from them. Synthesizing these principles, a robust, modern framework for drug repurposing can be proposed. This 

exemplary methodology integrates multi-modal features into a heterogeneous graph and leverages a Graph Attention Network 

(GAT) for prediction. 

 
Fig. 1: Overview of the proposed GAT-based framework for drug repurposing. 
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Table 1: Summary of Referenced Works 

Sr. 

No

. 

Authors 
Yea

r 
Title Methodology Findings Limitations 

Evaluation 

Metric(s) 

and 

Score(s) 

1 

Otero-

Carrasco 

et al. 

202

5 

Prioritization 

of potential 

drugs 

through 

pathway-

based drug 

repurposing 

and network 

proximity 

analysis 

Pathway-based 

analysis 

combined with 

network 

proximity (Z-

score) on a PPI 

network and 

transcriptomic 

data from СМар. 

Integrated 

network 

proximity with 

gene expression 

to rank drug 

candidates; 

identified 

sorafenib as a 

promising 

candidate for 

Alzheimer's 

disease. 

Relies on 

completeness 

and accuracy of 

public databases; 

CMap data from 

cancer cell lines 

may not 

represent all 

contexts. 

Network 

proximity Z-

score and 

CMap 

modZ; top 

candidate 

(Sorafenib 

for AD) had 

Zscore =
−4.4487. 

2 

Otero-

Carrasco 

et al. 

202

3 

Orphan 

drugs and 

rare diseases: 

Unveiling 

biological 

patterns 

through drug 

repurposing 

Descriptive and 

statistical 

analysis of 

orphan drug 

approvals, 

repurposing 

cases, and 

phenotypic 

similarity using 

Jaccard index. 

Found that 

repurposing 

often occurs 

between two rare 

diseases; these 

pairs show 

higher 

phenotypic 

similarity. 

Descriptive and 

pattern-based 

study, not 

predictive; 

limited rare 

disease data. 

Jaccard 

Index = 

0.206 (vs. 

0.054 

baseline); 

p < 10e −
26. 

3 
Ceddia et 

al. 

202

0 

Matrix 

factorization

-based 

technique for 

drug 

repurposing 

predictions 

Non-negative 

Matrix 

TriFactorization 

(NMTF) with 

shortest-path 

analysis on PPI 

to infer novel 

drug-protein 

interactions. 

Enhanced 

predictions for 

proteins lacking 

known drug 

interactions. 

Dependent on 

rank parameters; 

does not model 

biological 

pathway 

directionality. 

APS =
0.863; AUC 

= 0.931. 

4 

Marín 

Tercero et 

al. 

202

4 

Exploring 

drug 

repurposing 

opportunities 

for 

schizophreni

a: A network 

medicine 

approach 

Network 

proximity 

analysis to 

define a "disease 

module" for 

schizophrenia 

and compute 

drug-target 

distances. 

Identified 14 

potential 

repurposing 

candidates 

supported by 

literature. 

Interactome 

incomplete; 

computational 

predictions need 

experimental 

validation. 

Z-score -

0.15 ; top 

drug Zscore 

= −115.58. 

5 
Castiglion

e et al. 

202

3 

Explainable 

drug 

repurposing 

approach 

from biased 

random 

walks 

Biased random 

walks on 

knowledge 

graphs modeled 

as ergodic 

Markov 

processes for 

explainable 

recommendation

s. 

Provided 

accurate and 

efficient 

recommendation

s; promising 

rheumatoid 

arthritis 

candidates. 

Sensitive to 

graph structure 

and 

completeness; 

sparse data may 

cause noise. 

AUC (best) 

= 0.96; 

Accuracy =
0.875. 
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6 

Ayuso-

Munoz et 

al. 

202

3 

Enhancing 

drug 

repurposing 

on graphs by 

integrating 

drug 

molecular 

structure as 

feature 

GNN on 

heterogeneous 

graph with 

molecular 

structure-based 

initialization for 

drug nodes. 

Molecular 

structure 

features 

improved GNN-

based 

repurposing 

accuracy. 

Performance 

depends on 

embedding 

quality; other 

node features 

excluded. 

AUROC = 

0.9148; 

AUPRC = 

0.9219. 

7 Park et al. 
202

5 

Dual 

representatio

n learning for 

predicting 

drug-side 

effect 

frequency 

using protein 

target 

information 

Deep learning 

with dual 

embeddings for 

drugs and side 

effects in a 

common vector 

space. 

Achieved SOTA 

prediction of 

side-effect 

frequencies, 

especially for 

unseen drugs. 

Focused on side-

effects, not direct 

repurposing; 

dependent on 

feature data. 

AUROC = 

0.901; 

AUPRC = 

0.436. 

8 Li and Hu 
202

4 

Drug-target 

interaction 

prediction 

via deep 

multimodal 

graph and 

structural 

learning 

Hybrid 

framework 

combining 

multimodal 

GNN and 

CNNbased 

structural 

learning. 

Outperformed 

benchmarks; 

generalized well 

to unseen 

drugs/proteins. 

High model 

complexity; 

optimal 

ensembling may 

be 

datadependent. 

AUROC 

(DrugBank) 

= 0.973; 

AUPRC 

(DrugBank) 

= 0.954. 

9 

Rodriguez 

Gonzalez 

et al. 

202

5 

DRIVE: A 

data-driven 

platform for 

disease 

visualization 

and drug 

repurposing 

DRIVE 

integrates 

multiple data 

sources and six 

computational 

methods for 

repurposing. 

Offers an 

interactive 

platform for 

exploring 

disease networks 

and hypotheses. 

Platform paper; 

depends on 

integrated 

models for 

effectiveness. 

Uses GNN 

prediction 

scores, 

proximity Z-

scores; 

references 

prior 

benchmarks. 

10 

Artiñano-

Muñoz et 

al. 

202

4 

DRAGON: 

Drug 

repurposing 

via graph 

neural 

networks 

with drug 

and protein 

embeddings 

as features 

GNN-based link 

prediction 

(DRAGON) 

using 

drug/protein 

embeddings 

from molecular 

and sequence 

data. 

Multi-modal 

embeddings 

improved PR-

AUC for 

drugdisease 

prediction. 

Lacked 

embeddings for 

diseases/pathway

s; not validated 

experimentally. 

PR-AUC =
0.945. 

11 
Bacciu et 

al. 

202

4 

Deep graph 

networks for 

drug 

repurposing 

with multi-

protein 

targets 

Deep Graph 

Network 

predicting drug 

interactions with 

multiple protein 

targets jointly. 

Modeling multi-

protein targets 

improved 

robustness and 

prediction 

accuracy. 

Performance 

depends on 

protein 

functional 

relatedness; 

computationally 

heavy. 

AUROC 

(multi-

protein) = 

0.9413. 

12 
Wang et 

al. 

201

8 

ANTENNA: 

A multi-

rank, multi-

layered 

recommende

r system for 

drug 

repurposing 

Multi-layered 

recommender 

(ANTENNA) 

using 

trifactorization 

and Random 

Walk with 

Restart. 

Predicted 

diazoxide as 

repurposed for 

TNBC, validated 

experimentally. 

Complex model; 

performance 

sensitive to 

network density 

and data quality. 

FDR =
0.0108 

(Diazox-ide-

TNBC); 

Recall@K 

benchmarke

d. 
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A. Data Preprocessing and Knowledge Graph Construction 

The framework is an end-to-end pipeline that aims to turn raw, unconnected biomedical data into a ranked list of actionable 

hypotheses of drug repurposing. The first step is the curation and integration of data from several canonical databases to create a 

solid data foundation. Drug-focused data such as chemical structures (SMILES) and established protein targets are obtained from 

DrugBank and ChEMBL. Diseasegene associations are collected systematically from the DisGeNET database to establish a genomic 

ground for disease definitions. To simulate the underlying biological environment, a large PPI network is taken from the STRING 

database. A careful integration step is executed to align different entity identifiers to a uniform schema with precautions to ensure 

consistency of the dataset. 

The integrated dataset is then structured as a large-scale, heterogeneous graph, formally defined as 𝐺 = (𝑉, 𝐸, 𝑅, 𝜙, 𝜓), where 𝑉 

represents the set of all nodes (i.e., biological entities), and 𝐸 represents the set of all edges (i.e., known relationships). 𝑅 defines 

the set of all possible relation types. The function 𝜙: 𝑉 → 𝑇𝑉 maps each node to its specific type, where the set of node types is 

𝑇𝑉 = { drug, disease, protein }. Similarly, the function 𝜓: 𝐸 → 𝑅 maps each edge to its corresponding relation type, such as treats, 

targets, or interacts with. 

B. Multi-Modal Feature Generation Module 

This module is responsible for creating the initial, highdimensional feature vectors that serve as input for our deep learning model. 

Each entity type is processed through a specialized embedding pipeline to capture its unique characteristics. 

Drug Embedding: To capture the chemical and structural properties of drugs, Morgan fingerprints of size 1024 were generated from 

canonical SMILES strings using the RDKit library [13]. This algorithm creates a vector representing the presence or absence of 

specific circular substructures within a molecule, providing a rich numerical description of its topology that is crucial for predicting 

bioactivity. 

Protein Embedding: To represent the functional context of proteins, we utilized ESM-2, a state-of-the-art protein language model 

[14]. The canonical amino acid sequence of each protein was fed into the model to generate a 320 dimensional embedding. This 

dense vector captures complex biochemical and evolutionary information learned from millions of sequences, providing a far richer 

representation than a simple categorical identifier. 

Disease Embedding: To ground diseases in their underlying genomic basis, we created multi-hot encoded vectors using gene 

association data from DisGeNET [6]. Each vector's dimension corresponds to the total number of unique genes 

in our dataset, with a '1' indicating a known link between the disease and a specific gene. This creates a unique "genomic footprint" 

for each pathology. 

C. Graph Representation Learning Module 

This module is the core of our framework, designed to learn the complex, non-linear relationships within the knowledge graph. The 

initial feature vector for any node 𝑖 in the graph is defined as ℎ𝑖
(0)

= 𝑥𝑖 , where 𝑥𝑖 is the feature vector generated in the previous 

module. The goal of the subsequent layers is to refine this initial representation into a final, context-aware embedding ℎ𝑖
(𝐿)

 after 𝐿 

layers of graph convolution. 

We employ a Graph Attention Network (GAT) which learns to weigh the importance of different neighbors during aggregation. 

The unnormalized attention score 𝑒𝑖𝑗 between a central node 𝑖 and a neighbor 𝑗 is calculated as: 

𝑒𝑖𝑗 = LeakyReLU(𝐚𝑇[𝐖ℎ𝑖‖𝐖ℎ𝑗]) (7) 

Here, ℎ𝑖 and ℎ𝑗 are the feature vectors, transformed by a learnable weight matrix 𝐖 and concatenated. A dot product is taken with 

a learnable attention vector 𝐚𝑇. These scores are normalized into attention weights 𝛼𝑖𝑗 using the softmax function: 

𝛼𝑖𝑗 = softmax𝑗(𝑒𝑖𝑗) =
exp (𝑒𝑖𝑗)

∑  𝑘∈𝒩𝑖
 exp (𝑒𝑖𝑘)

(8) 

where 𝒩𝑖 is the set of all one-hop neighbors of node 𝑖. The updated embedding for node 𝑖 at the next layer is a weighted sum of its 

neighbors' transformed features: 

ℎ𝑖
(𝑙+1)

= 𝜎 ( ∑  

𝑗∈𝒩𝑖

 𝛼𝑖𝑗𝐖ℎ𝑗
(𝑙)

) (9) 

By stacking two such layers, our model allows information to propagate across a two-hop neighborhood, enabling it to capture more 

complex, indirect relationships. 

D. Prediction Module 

After the GAT produces the final, context-aware embeddings ℎ(𝐿), the model must make a prediction. For a given drug-disease pair 

(𝑣𝑑 , 𝑣𝑝), their final embeddings are first concatenated. This combined vector is then passed through a simple Multi-Layer Perceptron 

(MLP), which acts as a binary classifier to produce a raw output score (logit) 𝑠𝑑𝑝 : 

𝑠𝑑𝑝 = MLP ([ℎ𝑣𝑑

(𝐿)
‖ℎ𝑣𝑝

(𝐿)
]) (10) 

This logit is converted into a probability using the sigmoid function, indicating the likelihood that drug 𝑣𝑑 can be repurposed for 

disease 𝑣𝑝 : 

𝑃(𝑣𝑑 , 𝑣𝑝) = 𝜎(𝑠𝑑𝑝) =
1

1 + 𝑒−𝑠𝑑𝑝
(11) 

IV. CHALLENGES AND FUTURE DIRECTIONS 
Despite significant progress, several challenges remain in the field of computational drug repurposing. 

Data Quality and Integration: The performance of all computational methods is contingent on the quality, completeness, and 

standardization of the underlying data. Integrating disparate data sources with varying identifiers and levels of evidence remains a 

significant hurdle. 
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Model Generalizability and Validation: Many models are trained on known associations and may not generalize well to novel drugs 

or diseases (the "cold start" problem). Furthermore, computational predictions require rigorous experimental validation, which is 

often a bottleneck. Standardized benchmarks and validation datasets are crucial for comparing methods robustly [9]. 

Explainability and Interpretability: As models, especially deep learning ones, become more complex, their "black-box" nature 

becomes a barrier to clinical translation. Methods that provide explainable predictions, such as tracing influential pathways or 

neighbors in a graph, are becoming increasingly important [11]. 

Biological Complexity: Current models often simplify complex biological realities. For instance, predictions are rarely tissue-

specific, and most methods predict interactions with single targets rather than multi-target complexes or pathways [3]. 

Future work will likely focus on addressing these challenges. We anticipate a greater emphasis on multi-modal learning, where 

models can seamlessly integrate even more diverse data types, including electronic health records, imaging data, and 

transcriptomics. There is a growing need for models that can handle dynamic networks to capture changes over time or in different 

cellular contexts. Finally, the push for explainable AI (XAI) will continue, leading to hybrid models that combine the predictive 

power of deep learning with the interpretability of network-based approaches. 

V. CONCLUSION 
This survey has provided a comprehensive overview of the modern computational landscape for drug repurposing, charting its 

evolution from serendipitous discoveries to systematic, data-driven science. We have detailed the principal methodologies that are 

currently shaping the field, beginning with foundational network medicine concepts like pathway and proximity analysis, which 

leverage the topological structure of biological networks to infer therapeutic relationships. The discussion moved to machine 

learning techniques, including matrix factorization methods that treat repurposing as a recommendation problem, and culminated in 

the exploration of advanced deep learning models. In particular, we highlighted the impact of Graph Neural Networks (GNNs), 

which are uniquely suited to learning from the complex, interconnected nature of biomedical data. A recurring theme has been the 

critical importance of integrating heterogeneous, multi-modal data and developing rich feature representations for drugs, proteins, 

and diseases. While these computational frameworks offer immense potential to accelerate therapeutic discovery, we also 

acknowledged the persistent challenges of data integration, model generalizability, and the crucial need for explainability to bridge 

the gap between in silico predictions and clinical translation. Future progress will undoubtedly depend on the development of more 

sophisticated, interpretable, and biologically-informed models that can navigate the complexity of human disease and 

pharmacology. 
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