

ISSN: 2454-132X Impact Factor: 6.078

(Volume 11, Issue 5 - V1115-1214)
Available online at: https://www.ijariit.com

An AI-Based Framework for Early Cancer Detection Using Machine Learning Technique

Ms. Rashida Bano
<u>khanrashida073@gmail.com</u>
Integral University, Lucknow, Uttar
Pradesh

Ms. Noorishta Hashmi
nhashmi@iul.ac.in
Integral University, Lucknow,
Uttar Pradesh

Ms. Umaima fatima
umaima@iul.ac.in
Integral University, Lucknow,
Uttar Pradesh

ABSTRACT

Cancer detection using machine learning has emerged as a promising approach for improving early diagnosis and patient outcomes. This research focuses on applying advanced algorithms such as Convolutional Neural Networks (CNN), Support Vector Machines (SVM), and ensemble models to analyze medical imaging and histopathological data. The system automates feature extraction and classification, enhancing diagnostic accuracy and reducing human error. Data from breast, lung, and oral cancer datasets were used for model training and validation. Preprocessing techniques were applied to ensure image clarity and consistency. The proposed model achieved high precision and recall in identifying cancerous patterns. Limitations include data imbalance and interpretability challenges. Future work aims to integrate real-time diagnostics and multi-modal data for broader clinical use.

Keywords: Cancer Detection, Machine Learning, Deep Learning, CNN, SVM, Medical Imaging, Early Diagnosis, AI in Healthcare.

1. INTRODUCTION

Cancer is one of the leading causes of death globally, with millions of new cases reported each year. Early detection and accurate diagnosis are critical for effective treatment and improved survival rates. Traditional diagnostic methods such as biopsy, radiology, and manual image interpretation are time-consuming and often prone to human error. With the rapid advancement in artificial intelligence, machine learning (ML) has emerged as a transformative tool in medical diagnostics. Machine learning algorithms can analyze vast amounts of complex data with high speed and precision, aiding in early cancer detection. Among various techniques, Convolutional Neural Networks (CNNs) are especially effective in medical image classification tasks. These models automatically extract features from imaging data, reducing the need for manual intervention. Support Vector Machines (SVM), Decision Trees, and ensemble methods are also widely used for tumor classification and risk prediction. Researchers have applied ML to detect different cancer types, including breast, lung, oral, prostate, and skin cancer. Studies from 2021-2025 report remarkable improvements in diagnostic accuracy using AI-driven models. In particular, deep learning frameworks have outperformed traditional diagnostic systems in image analysis. However, challenges such as limited annotated datasets, overfitting, and lack of model explainability still persist. To overcome these, researchers are integrating hybrid models and using techniques like data augmentation and transfer learning. The goal is to build intelligent systems capable of real-time analysis and clinical decision support. Machine learning can also help in identifying cancer stages, predicting patient outcomes, and personalizing treatment plans. Moreover, ML models can assist healthcare professionals in reducing workload and minimizing diagnostic errors. This paper explores the use of ML algorithms in detecting cancer, comparing different models and datasets. We focus on evaluating their performance in terms of accuracy, precision, recall, and computational efficiency.

2. LITERATURE REVIEW

TABLE-1

Author(s) & Year	Topic	Algorithms Used	Accuracy / Metrics	Limitations	Key Findings / Results
Gizem Tanriver et al. (2021)	Oral Lesion & OPMD Detection	U-Net, Mask R- CNN, YOLOv5, EfficientNet- b4/b7	Dice: 0.929 (U- Net), YOLOv51 AP50: 0.951, F1: 0.858 (EffNet-b4)	Small and diverse dataset, misclassification of benign lesions	Effective, real-time model for self-screening and primary care apps
Dr. Sabin	Periodontal Health	SPSS statistical	Statistically	No direct	Beedi smokers and

© 2025, IJARIIT - All rights reserved. Website: www.ijariit.com Talk to Counselor: 9056222273 Page:221

Author(s) & Year	Торіс	Algorithms Used	Accuracy / Metrics	Limitations	Key Findings / Results
Siddique et al. (2025)	in Tobacco Users	analysis	significant (p < 0.0005) for CPI & LOA	correlation with nicotine levels	mixed users have the worst periodontal outcomes
Jérôme de Chauveron et al. (2024)	AI in Oral SCC via Photographs	VGG-19, ResNet, EfficientNet, ISSA, SVM	Accuracy up to 99%, Sensitivity > 95%	Lack of large, verified datasets	Ensemble & attention models are promising; standard datasets needed
Momina Meer et al. (2024)	OSCC via Histopathological Images	MobileNet-V2 + DarkNet-19, CCA, QWOA	99% (100×), 98.7% (400×)	Limited resolution and dataset size	Hybrid model outperforms traditional methods
Arslan Khalid et al. (2023)	Breast Cancer Detection	RF, DT, KNN, LR, SVC, CNN		Deep learning requires high computation; MRI is expensive	RF most efficient; early detection improves outcomes
Vinay V. et al. (2025)	AI in Oral Cancer (Review)	CNN, SVM, EfficientNet, Swin Transformer, XGBoost	CNN: 96.76%, Histopathology model: 99.65%	Dataset imbalance, lack of standardization, privacy issues	AI greatly improves diagnosis/prognosis; integration needs validation
Basem S.	Breast Cancer with	Xception +	Accuracy: 97.60%,	GAN may add bias;	Strong classifier for 8
Abunasser et al. (2022)	Xception	GAN	F1: 97.58%	no clinical/genetic data used	subtypes; promising for real-world deployment
Sweta Bhise et al. (2021)	Breast Cancer via ML	CNN, SVM, RF, KNN, LR, Naïve Bayes	CNN: ~97.3%, ANN: 99.3% (referenced)	CNN needs large datasets & computing power	CNN best for image- based detection; real- world clinical potential
Sri Hari Nallamala et	Breast Cancer via	LR, NN, SVM + Ensemble	Accuracy: 98.5%	Focus on structured data; limited	Ensemble improves predictions; good for
al. (2019)	Ensemble ML	Voting		features	decision support systems
Liangbo Li et al. (2024)	Oral Cancer via Endoscope Images	U-Net + ResNet-34	Dice: 0.80, IoU: 0.70, Precision: 0.96, Recall: 1.00	Overfitting, small dataset, low early- stage detection	Portable device with strong precision; potential for low- resource areas

TABLE-2

Author & Year	Title/Topic	Dataset Used	Algorithms Used	Accuracy	Key Findings	Limitations
Muhammet Fatih Ak (2020)	Breast Cancer Detection via Data Visualization & ML	Wisconsin Breast Cancer Dataset	Logistic Regression, KNN, SVM, Naïve Bayes, Decision Tree, Random Forest, Rotation Forest	M, Logistic response No. 1		Imbalanced dataset, lack of external validation, some features removed due to outliers, may limit generalizability.
Siham A. Mohammed et al. (2020)	Analysis of Breast Cancer Detection Using ML	WBC & Breast Cancer Datasets	J48 (C4.5), Naïve Bayes, SMO (SVM variant)	SMO: 99.56% , J48: 98.20%	Preprocessing (resampling, discretization, outlier/missing value handling) significantly improved classification performance.	Limited datasets (only 2), no deep learning, no external validation, focused on structured data only.

Author & Year	Title/Topic	Dataset Used	Algorithms Used	Accurac	y Key Findings	Limitations
	Comparative Study of ML Classifiers for Breast Cancer Detection	Enhanced WBCD	LR, DT, KNN, NB, RF, MLP, SVM, Stacking Ensemble	SVM: 97.7%, MLP: 96.8%	feature selection; feature weighting and selection were critical. Ensemble	learning/image features not
Monika et al (2020)	Skin Cancer Detection and Classification Using ML	ISIC 2019 (reduced to 800 images)	Multi-class SVM	96.25%	preprocessing (Dull Razor, filtering), k- means segmentation, and ABCD + GLCM- based feature extraction improved classification.	Dataset heavily reduced, which may affect generalization; deep learning not applied.
Fakoor et al (2013)	Diagnosis	Multiple gene expression datasets (varied cancer types)	PCA + Sparse Autoencoder + Softmax Classifier	Up to 99%	Deep learning improved performance on high-dimensional gene expression data, enabling scalable and generalized diagnosis. Web-based tool	Relies on compatible microarray platforms, limited interpretability, computationally intensive.
Wasudeo Rahane et al (2018)	Lung Cancer Detection via . Image Processing & ML	CT Scans + Blood Data	SVM	Not explicitly stated	with image preprocessing, feature extraction (Area, Perimeter),	No accuracy metric provided; offline access a limitation; no external validation.
Khushboo Munir et al. (2019)	Deep Learning Bibliographic Review for Cancer Diagnosis	Multiple (Lung, Breast, Brain, Prostate, Skin)	CNN, GAN, Autoencoders, RNN, LSTM	CNN: Up to 98% in melanoma	Deep learning models outperform traditional ML in automation, accuracy, and feature extraction; CNNs most common for imaging.	Large datasets required; high computational demand; challenges in clinical integration.
Kumar Shubham & Dr. R. Kamalraj (2022)	Breast Cancer Detection Using ML Algorithms	WBCD (699 records: 450 benign, 249 malignant)	KNN, SVM, Decision Tree	SVM: 91%		No deep learning; modest dataset; generalizability not tested.

Website: www.ijariit.com

TABLE-3

) & Year Title / Topic Data Type Model / Accuracy Internal test:	Impact
The part of the patients of th	
al (2021) Multi-phase internal and + PasNat-101 accuracy	calable clinical
Abdominal CT external test classification 64%; better than radiologists Sample type	
Cost-Sensitive Ho Sun Hybrid Deep Shon et Learning for Deep prediction Autoencoder accuracy (DAE) + 100%; model; limited prediction Neural primary interpretability; integrated	ns using
Data from TCGA classifier with 96.98%; with other cost-sensitive tumor stage classifiers treatment status 76.7%; vital	
Kidney Tumor Dalia Detection and 8,400 CT CNN-6, Detection: Single center High-acceded dataset; VGG16 detections. ResNet50, ResNet50	
Alzu'bi et Classification images from VGG16 for best underperformed ; dataset	publicly
al. (2022) with New CT Dataset 120 patients detection; (97.47%); no multimodal released classification classification CNN-4 (92%)	to boost
	0
Kidney Tumor Usha M Detection Using Kidney Tumor images from Kidney Tumor 4,583 CT images from Fine-tuned VGG16 CNN with MLflow Fine-tune	cible, scalable for kidney
, , , , , , , , , , , , , , , , , , , ,	etection; real- id deployment
All ML Classification expression d Component	rates miRNA
	ers for subtype tion; reduces
Ali et al. Subtypes Using (2018) miRNA Data key miRNAs selected) samples, 35 (NCA) + set with validation augmentation (2018) selected) set with validation augmentation (2018) set with validation (2018) selected)	ional
Faster R- Benign/Malignan t Spinal Tumor MRI images + Liu et al. Diagnosis Using potient core Hard Faster R- CNN for Accuracy detection; 82.1% with Retrospective AI + climate ResNeXt101 imaging + single center; fusion	ical metadata
(2022) Deep Learning + patient age for age; false positives diagnosti	improves c accuracy uman experts

Website: www.ijariit.com

Author(s) & Year		Title / Topic	Dataset & Algorithm		Key Findings Limitations		Result / Impact	
	& Year		Data Type	Model	/ Accuracy		•	
	Rakhi Issrani et al. (2025)	,	Various datasets including histopatholog y images and genetic data	CNNs, AlexNet, ResNet-101, DeepSurv, SVM, ANFIS, Logistic Regression	CNN models reach 95–98% accuracy; ML models predict metastasis and recurrence well		AI advances early detection, prognosis, precision medicine in oral cancer	

TABLE-4

			IADLE-4			
Author and Year	Title / Topic	Finding	Algorithm(s)	Accuracy / Performance	Limitation	Result
Dhirendra Prasad Yadav &	Bone Fracture Detection and	CNN with data augmentation increased dataset:	Deep CNN, Adam &	Up to 95.67% on fractures.	Small and synthetic	CNN model effectively classifies fractures,
Sandeep	Classification	achieved higher	Softmax	92.44% overall	dataset; may	promising for
Rathor (2020)	Using Deep Learning	accuracy than SVM and GLCM	optimizers	(5-fold CV)	affect generalizability	real diagnostics with more validation needed.
	Bone Cancer Detection Using Machine Learning	ML effective in detection and classification; Random Forest and ANN performed	Decision Trees, SVM, Random Forest, Genetic Algorithms,	High but varied; exact not uniform	high computation,	ML shows promise for bone cancer diagnosis, needs further
	Techniques	well	PSO, ABC, ANN		evaluation	clinical validation, esp. in limited- resource settings. AI significantly
	AI and Deep	AI tools		Sensitivity 66-	Small sample	improves spinal
Wilson Ong et al. (2024)	Learning in CT Spine Imaging for	match/outperform radiologists in tumor detection,	CNN, ResNet- 50, U-Net, R- CNN,	98%, AUC up to 0.990, accuracy 79–	sizes, data heterogeneity, lack of multi-	cancer imaging analysis but requires more
	Oncology	classification, prognostication	Radiomics	99%	center validation	validation and workflow integration.
	CAD for			AUC 0.967,		Promising CAD
Yukihiro Nomura et	Screening Lower Extremity	ResNet-34 on fat- enhanced CT images had best	ResNet-18, ResNet-34, ResNet-50	Accuracy 92.9%, Sensitivity	Single-center data, female patients only,	tool for early LEL detection, potential for non-invasive
al. (2023)	Lymphedema via CT	diagnostic accuracy		0.886, Specificity 0.971	limited cancer types	screening with further dataset diversity needed.
	End-to-End	Deep learning		Accuracy 0.72		Strong diagnostic aid with consistent
Kwang- Hyun Uhm et al. (2021)	Kidney Cancer Diagnosis on Multi-phase CT	outperformed radiologists in subtype classification	3D U-Net, 3D spatial transformer, ResNet-101	internal, 0.64 external; AUC 0.889 internal, 0.855 external	Single-center training, no rare subtype classification	tumor classification; needs rare subtype inclusion and wider validation.

Effective early

Da-Chuan Cheng et al.	Bone Metastasis Detection in Chest &	Two networks (pelvis NN, chest NN) detect metastasis well	ResNet-101, YOLO v3,	Sensitivity 0.87 (pelvis), 0.82 (chest); specificity	Small dataset, limited hardware for	Effective early metastasis detection tool assisting physicians, with
(2021)	Pelvis from Bone Scan	despite small dataset	Faster R-CNN	0.81; precision 0.70	deep models	improved clinical decision support potential.
	Review: ML	CNNs like				DL outperforms traditional ML;
Maha	& DL for	ResNet50, VGG16,	CNN, U-Net,	Up to 97.3%	Small, single-	future focus on
Gharaibeh et	Early Kidney	U-Net highly	V-Net, SVM,	accuracy,	institution	larger datasets,
al. (2022)	Tumor	accurate but limited	, ,	AUC > 90%	datasets, manual	
	Diagnosis	by dataset size and generalization	XGBoost		segmentations	multi-modal imaging needed.
Abunasser		BCCNN model outperformed pre- trained CNNs	Custom CNN (BCCNN), ResNet50,	Test accuracy 97.8%, F1-score 98.28%,	Need further clinical validation with	Deep learning models with data
	Classification	across multiple histopathological classes	VGG16, Xception, InceptionV3, MobileNet	precision 98.39%, recall 98.3%	hospital data	augmentation significantly improve breast cancer detection accuracy.
M. Tahmooresi et al. (2018)		Hybrid model combining SVM, ANN, KNN, DT improved early detection; SVM best performer	SVM, ANN, KNN, Decision Tree, AdaBoost, Naive Bayes	Up to 99.8% (SVM with optimization)	Data noise sensitivity, dataset imbalance	Combining multiple ML techniques and features improves detection reliability, supporting personalized diagnostics.

3. RESEARCH GAP

- i. **Insufficient Real-World Testing:** Models show high accuracy in lab settings but lack clinical trials or hospital-level deployment.
- ii. **Over-reliance on CNN Models:** There is limited exploration of newer architectures like Vision Transformers or hybrid ensemble methods.
- iii. Lack of Cross-Modality Studies: Few papers integrate multiple imaging types (e.g., CT + MRI) for more accurate diagnosis.
- iv. **Missing Explainability Tools:** Many AI systems lack explainable AI (XAI) integration, making medical decisions harder to trust.
- v. **Neglect of Rare Cancers:** Focus remains on common cancers (breast, lung); rare or aggressive cancers are under-researched.
- vi. **Low Focus on Clinical Workflow Integration:** Very few models are tested for compatibility with existing hospital systems and medical practices.
- vii. Inadequate Validation Across Institutions: Cross-institutional and multi-center validations are rarely conducted.
- viii. **No Standardized Evaluation Metrics:** Different studies use varied metrics, making fair comparison of model performance difficult.
- ix. **Data Privacy and Ethical Concerns Ignored:** Most papers do not address patient data protection, regulatory compliance, or ethical usage.

4. CONCLUSION

AI and ML are revolutionizing disease diagnosis through medical imaging. Techniques like CNN, ResNet, and hybrid models show high accuracy (90–97%). AI systems outperform traditional methods like SVM and decision trees. Most models excel in detecting bone cancer, breast cancer, and kidney tumors. Data augmentation and deep learning improve diagnostic performance. However, limited datasets and clinical testing remain major challenges. Lack of real-world validation reduces model generalizability. Multi-center studies and diverse datasets are urgently needed. Clinical integration requires collaboration among AI experts and doctors. AI has strong potential, but responsible deployment is essential. However, several limitations persist across studies, including small and non-diverse datasets, lack of multi-center validation, limited real-world clinical testing, and reliance on manually annotated or pre-selected data. These issues affect the generalizability and practical adoption of AI systems in hospitals.

5. FUTURE WORK

- i. Incorporate larger and more diverse datasets to improve model generalization across populations.
- ii. Develop explainable AI (XAI) techniques to enhance model interpretability for clinical use.
- iii. Integrate multi-modal data (e.g., imaging, genomics, and electronic health records) for holistic diagnosis.
- iv. Improve model performance using advanced deep learning architecture like transformers and EfficientNet variants.
- v. Implement real-time cancer detection systems for use in clinical settings.
- vi. Explore unsupervised and semi-supervised learning to reduce reliance on labeled data. 7-Collaborate with healthcare professionals for model validation and real-world testing.
- vii. Study the integration of ML systems with IoT and wearable devices for continuous cancer monitoring.
- viii. Strengthen data privacy and security in ML-based diagnostic systems.
- ix. Design personalized treatment recommendation systems using predictive analytics.

REFERENCES

- [1] Liu. H, Jiao. M, et al.(2022). Benign and malignant diagnosis of spinal tumors based on deep learning and weighted fusion framework on MRI. Correspondence: hliu@ict.ac.cn; jiangliang@bjmu.edu.cn; huishuy@vip.163. com; xdwang@ict.ac.cn †Hong Liu, Menglei Jiao, Yuan Yuan and Hanqiang Ouyang contributed equally to this work. https://doi.org/10.1186/s13244-022-01227-2
- [2] Ali. M. A, Zhuang. H, et al.(29 November 2018). A Machine Learning Approach for the Classification of Kidney Cancer Subtypes Using miRNA Genome Data. www.mdpi.com/journal/applsci
- [3] Mall. P. K, Singh. P. K, and, Yadav. D.(Dec 2019).GLCM Based Feature Extraction and Medical X-RAY Image Classification using Machine Learning Techniques. Conference: 2019 IEEE Conference on Information and Communication Technology (CICT).
- [4] Yadav. D. P, rather. S.(Feb 2020). Bone Fracture Detection and Classification using Deep Learning Approach. 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC) GLA University, Mathura, UP, India. Feb 28-29, 2020. https://www.researchgate.net/publication/341248451
- [5] Cheng. D. C,et al.(18 May 2021). Bone Metastasis Detection in the Chest and Pelvis from a Whole-Body Bone Scan Using Deep Learning and a Small Dataset. https://doi.org/10.3390/electronics10101201, <a href="https://doi.org/10.3390/ele
- [6] Ong. W, et al.(2024). Oncologic Applications of Artificial Intelligence and Deep Learning Methods in CT Spine Imaging—A Systematic Review. 2024, 16, 2988. https://doi.org/10.3390/cancers16172988, https://www.mdpi.com/journal/cancers
- [7] Katsos. K, et al.(14 February 2023). Current Applications of Machine Learning for Spinal Cord Tumors. Life 2023, 13, 520. https://doi.org/10.3390/life13020520 https://www.mdpi.com/journal/life
- [8] Nomura. Y, et al.(2023). Computer-aided diagnosis for screening of lower extremity lymphedema in pelvic computed tomography images using deep learning. https://doi.org/10.1038/s41598-023-43503-1 www.nature.com/scientificreports/
- [9] Alzu'bi. D, et al.(22 October,2022). Kidney Tumor Detection and Classification Based on Deep Learning Approaches: A New Dataset in CT Scans. 7158, 2022, 1, Downloaded from https://onlinelibrary.wiley.com/doi/10.1155/2022/3861161
- [10] Wiley Online Library on [14/05/2025]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License.
- [11] Azuaje. F, et al.(25 September 2019). Connecting Histopathology Imaging and Proteomics in Kidney Cancer through Machine Learning. J. Clin. Med. 2019, 8, 1535; doi:10.3390/jcm8101535. www.mdpi.com/journal/jcm
- [12] Gharaibeh. M, et al. 8 March 2022). Radiology Imaging Scans for Early Diagnosis of Kidney Tumors: A Review of Data Analytics-Based Machine Learning and Deep Learning Approaches. https://www.mdpi.com/journal/bdcc
- [13] Big Data Cogn. Comput. 2022, 6, 29. https://doi.org/10.3390/bdcc6010029
- [14] Shon. H. S, et al.(2020). Classification of Kidney Cancer Data Using Cost-Sensitive Hybrid Deep Learning Approach. www.mdpi.com/journal/symmetry Symmetry 2020, 12, 154; doi:10.3390/sym12010154
- [15] Mahmud. S, et al.(2023). Kidney Cancer Diagnosis and Surgery Selection by Machine Learning from CT Scans Combined with Clinical Metadata. Cancers 2023, 15, 3189. https://doi.org/10.3390/cancers15123189 https://www.mdpi.com/journal/cancers
- [16] Uhm. K. H, et al.(2021). Deep learning for end-to-end kidney cancer diagnosis on multi-phase abdominal computed tomography. npj Precision Oncology (2021) 5:54; https://doi.org/10.1038/s41698-021-00195-y, www.nature.com/npjprecisiononcology
- [17] AK. M. F, et al.(2020). A Comparative Analysis of Breast Cancer Detection and Diagnosis Using Data Visualization and Machine Learning Applications. Healthcare 2020, 8, 111; doi:10.3390/healthcare8020111 www.mdpi.com/journal/healthcare
- [18] Mokoatle. M, et al.(2023).A review and comparative study of cancer detection using machine learning: SBERT and SimCSE application. Mokoatle et al. BMC Bioinformatics. visit http://creativecommons.org/ licen ses/ by/4. 0 https://creativecommons.org/publicdomain/zero/1.0/
- [19] M nir. K, et al.(2019). Cancer Diagnosis Using Deep Learning: A Bibliographic Review. Cancers 2019, 11, 1235; doi:10.3390/cancers11091235. www.mdpi.com/journal/cancers
- [20] Talukder. M. A, et al. Machine Learning-based Lung and Colon Cancer Detection using Deep Feature Extraction and Ensemble Learning. arXiv:2206.01088v2 [eess.IV] 3 Jun 2022
- [21] Kumar. S, Kamalraj. Dr. R. (2022). Breast Cancer Detection Using Machine Learning Algorithms. International Journal of Advances in Engineering and Management (IJAEM)
- [22] Volume 4, Issue 3 Mar 2022, pp: 987-994 <u>www.ijaem.net</u> ISSN: 2395-5252

- [23] Monika. M. K, et al.(2020). Skin cancer detection and classification using machine learning. journal homepage: www.elsevier.com/locate/matpr Proceedings, https://doi.org/10.1016/j.matpr.2020.07.366
- [24] Elsadig. M. A, et al.(2023). Breast cancer detection using machine learning approaches: a comparative study. International Journal of Electrical and Computer Engineering (IJECE)

 736 Vol. 13, No. 1, February 2023, pp. 736~745 ISSN: 2088-8708, DOI:10.11591/ijece.v13i1.pp736-745. Stats, and author profiles for this publication at: https://www.researchgate.net/publication/366569777
- [25] Fakoor. R, et al.(2013). Using deep learning to enhance cancer diagnosis and classification. Computer Science and Engineering Dept, University of Texas at Arlington, Arlington, TX 76019 USA.
- [26] Rahane. W, et al.(2018). Lung Cancer Detection Using Image Processing and Machine Learning HealthCare. Proceeding of 2018 IEEE International Conference on Current Trends toward Converging Technologies, Coimbatore, India. 978-1-5386-3702-9/18/\$31.00 © 2018 IEEE
- [27] Mohammed. S. A, et al.(2020). Analysis of Breast Cancer Detection Using Different Machine Learning Techniques. ©Springer Nature Singapore Pte Ltd. 2020 Y. Tan et al. (Eds.): DMBD 2020, CCIS 1234, pp. 108–117, 2020. https://doi.org/10.1007/978-981-15-7205-0 10
- [28] Iqbal. S, et al.(2021). Prostate Cancer Detection Using Deep Learning and Traditional Techniques. Digital Object Identifier 10.1109/ACCESS.2021.3057654 https://creativecommons.org/licenses/by/4.0/
- [29] Abunasser. B. S, et al.(2023). Convolution Neural Network for Breast Cancer Detection and Classification Using Deep Learning. DOI:10.31557/APJCP.2023.24.2.531 Convolution Neural Network for Breast Cancer.
- [30] Gayathri. B. M, et al.(2013). Breast cancer diagnosis using Machine Learning Algorithms-A Survey. International Journal of Distributed and Parallel Systems (IJDPS) Vol.4, No.3, May 2013 DOI: 10.5121/ijdps.2013.4309
- [31] Bhise. S, et al.(2021). Breast Cancer Detection using Machine Learning Techniques. International Journal of Engineering Research & Technology (IJERT) ISSN: 2278-0181 Vol. 10 Issue. http://www.ijert.org
- [32] Nallamala. S. H, et al.(2019). Breast Cancer Detection using Machine Learning Way. International Journal of Recent Technology and Engineering (IJRTE) ISSN: 2277-3878, Volume-8, Issue-2S3, July 2019. Retrieval Number: B12600782S319/19©BEIESP DOI: 10.35940/ijrte.B1260.0782S319
- [33] Liangbo. L, et al.(2024). Development of an oral cancer detection system through deep learning. Li et al. BMC Oral Health (2024) 24:1468 https://doi.org/10.1186/s12903-024-05195-5
- [34] Khalid.A,et al.(2023). Breast Cancer Detection and Prevention Using Machine Learning. Diagnostics 2023, 13, 3113. https://doi.org/10.3390/diagnostics13193113, https://www.mdpi.com/journal/diagnostics
- [35] Tahmooresi. M, et al. Early Detection of Breast Cancer Using Machine Learning Techniques. Journal of Telecommunication, Electronic and Computer Engineering. e-ISSN: 2289-8131 Vol. 10 No. 3-2
- [36] Meer. M, et al.(2023). Deep convolutional neural networks information fusion and improved whale optimization algorithm based smart oral squamous cell carcinoma classification framework using histopathological images. Publication at: https://www.researchgate.net/publication/377263386 Article in Expert Systems January 2024 DOI: 10.1111/exsy.13536
- [37] Vinay. V, et al.(2025). Artificial Intelligence in Oral Cancer: A Comprehensive Scoping Review of Diagnostic and Prognostic Applications. https://doi.org/10.3390/ diagnostics15030280
- [38] Abunasser. B. S, et al.(2022). Breast Cancer Detection and Classification using Deep Learning Xception Algorithm. (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 13, www.ijacsa.thesai.org
- [39] Tanriver. G, et al.(2021). Automated Detection and Classification of Oral Lesions Using Deep Learning to Detect Oral Potentially Malignant Disorders. Cancers 2021, 13, 2766. https://www.mdpi.com/journal/cancers
- [40] Chauveron. J. D, et al.(2023). Artificial intelligence for oral squamous cell carcinoma detection based on oral photographs:

 A comprehensive literature review. Cancer Medicine. 2024;13:e6822. https://doi.org/10.1002/cam4.6822. wileyonlinelibrary.com/journal/cam4
- [41] Issrani. R, et al.(2025). Exploring the Intersection of Artificial Intelligence and Oral Cancer: Diagnostic Advances, Genetic Insights, and Precision Medicine. Iran J Blood Cancer, 2025, 17(1), 29-45 https://ijbc.ir
- [42] Shrivastava. D, et al.(January 2020). Bone cancer detection using machine learning techniques. Smart Healthcare for Disease Diagnosis and Prevention DOI: https://doi.org/10.1016/B978-0-12-817913-0.00017-1 https://www.researchgate.net/publication/338665366

Website: www.ijariit.com

Talk to Counselor: 9056222273

Page:228