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ABSTRACT 

This paper introduces a novel approach to ship monitoring for 

enhanced maritime safety and security. Traditional methods 

rely on Automatic Identification Systems (AIS) and marine 

radar, but their effectiveness is hindered by the absence of AIS 

on some vessels. To overcome this limitation, Faster R-CNN, 

trained on Range-Compressed Airborne Radar Data, is 

proposed. By utilizing airborne radar signals, the need for AIS 

installations is eliminated. The Faster R-CNN algorithm is 

trained on both Time Domain and Doppler Domain data types 

for object detection and classification, respectively. 

Leveraging Resnet50 as the backbone model, the system 

achieves efficient ship detection by analyzing specific regions, 

thus reducing false detections. This innovative approach 

presents a significant advancement in sea monitoring 

capabilities, ensuring enhanced safety and security at sea. 

Keywords: Airborne radar, deep learning, maritime safety, 

moving target indication (MTI), synthetic aperture radar 

(SAR). 

1. INTRODUCTION 

Ship monitoring plays a pivotal role in ensuring maritime safety 

and security, particularly in regions facing challenges such as 

high ship density and illegitimate shipping activities like piracy 

and illegal fishing [1]. Timely detection of vessels at sea is 

imperative for enhancing maritime situational awareness and 

enabling proactive responses to potential threats [2]. Traditional 

ship monitoring systems, such as the Automatic Identification 

System (AIS) and marine radars, are widely used but suffer 

from significant limitations [1]. Notably, not all ships, 

especially smaller ones, are mandated to carry AIS 

transponders, leading to incomplete coverage and gaps in 

monitoring [3]. Moreover, the reliability of transponder-based 

systems is contingent upon ship cooperation, and marine radars 

are constrained by their acquisition range, which may not 

provide comprehensive coverage of vast maritime regions [4]. 

To address these challenges and augment existing monitoring 

capabilities, researchers have explored the integration of air- 

and spaceborne radars as additional data sources [1, 2, 3]. These 

radar systems offer distinct advantages, including the ability to 

cover wide areas and acquire high-resolution data independent 

of weather and daylight conditions [1]. Airborne radars, in 

particular, offer the advantage of achieving both shorter revisits 

and longer observation times compared to spaceborne radars, 

although they may not provide global coverage [2, 3, 4]. 

Leveraging the capabilities of airborne radar systems presents a 

promising avenue for enhancing ship detection and monitoring 

efforts in coastal areas and beyond. Conventionally, ship 

detection methods have relied on techniques such as constant 

false alarm rate (CFAR), which are well-established but may 

have drawbacks in operational use [5]. In high-resolution radar 

data, a single ship can generate thousands of detected pixels, 

necessitating additional post-processing to identify ship objects, 

thereby increasing computation time [6]. Additionally, CFAR-
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based algorithms may result in false detections from other 

marine objects or intense ocean clutter, requiring further post-

processing steps to mitigate false alarms [5, 6] Recent 

advancements in deep learning techniques have shown promise 

in improving ship detection capabilities, offering an alternative 

to traditional methods [7, 8, 9]. Among these techniques, the 

Faster R-CNN framework has emerged as a popular choice for 

ship detection in radar imagery [8]. Unlike conventional 

methods, deep learning approaches can leverage the inherent 

features of radar data for more accurate and efficient detection 

of ships at sea. While most deep learning techniques have been 

applied to fully focused synthetic aperture radar (SAR) images, 

the time-consuming nature of SAR image generation limits 

their real-time applicability [10]. To address this limitation, 

Range-Compressed (RC) radar data have been proposed as a 

solution for achieving real-time ship detection capabilities [11]. 

RC radar data eliminate the need for complex processing steps 

involved in SAR image formation, thereby reducing overall 

processing time and enabling continuous monitoring of 

maritime hotspots [11]. Despite the potential advantages of RC 

radar data, the applicability of deep learning techniques to this 

data type for ship detection has not been extensively explored 

[11]. In this context, this letter proposes two novel deep learning 

methodologies for ship detection using RC airborne radar data, 

focusing on detection in both the time and Doppler domains 

[12]. Leveraging the Faster R-CNN framework with a ResNet-

50 backbone, these methodologies aim to provide efficient and 

accurate ship detection capabilities for enhancing maritime 

situational awareness. This letter presents a detailed comparison 

between the proposed deep learning-based detectors and a state-

of-the-art CFAR-based ship detector, evaluating their 

performance using real X-band RC radar datasets acquired with 

the German Aerospace Center's (DLR) airborne radar systems 

[13, 14, 15].  

2. LITERATURE SURVEY 

Ship detection from airborne platforms has been a subject of 

extensive research over the years due to its significance in 

maritime surveillance and security. This section provides a 

comprehensive review of relevant literature, spanning from 

conventional ship detection methods to the recent 

advancements in deep learning techniques applied to radar 

imagery. 

Early studies on ship detection from airborne platforms 

primarily focused on the utilization of traditional remote 

sensing techniques. Fingas and Brown (2001) conducted a 

review of ship detection methodologies, highlighting the 

importance of airborne platforms in maritime surveillance [4]. 

These methods often relied on feature extraction and 

classification algorithms applied to various sensor data, 

including optical and radar imagery. 

Radar-based ship detection, particularly in synthetic aperture 

radar (SAR) imagery, garnered significant attention due to its 

all-weather and day-night operational capabilities. Crisp (2004) 

provided a comprehensive overview of the state-of-the-art in 

ship detection from SAR imagery, discussing the challenges 

and advancements in this field [5]. Conventional approaches 

often employed constant false alarm rate (CFAR) techniques for 

detection, followed by postprocessing to mitigate false positives 

and extract ship objects. 

Joshi et al. (2019) proposed a range-Doppler based CFAR ship 

detection method with automatic training data selection, 

addressing some of the limitations of traditional CFAR 

algorithms [6]. Their approach integrated range and Doppler 

information for improved detection performance, showcasing 

the continuous efforts to enhance ship detection accuracy and 

reliability. 

Recent years have witnessed a paradigm shift towards the 

application of deep learning techniques in ship detection tasks. 

Leng et al. (2022) explored ship detection in range-compressed 

SAR data, highlighting the potential of deep learning in 

processing radar imagery for real-time applications [11]. Their 

study focused on leveraging deep learning architectures to 

efficiently detect ships in RC radar data, offering a promising 

avenue for future research in this domain. 

Densely connected neural networks have also emerged as 

effective tools for ship detection in SAR imagery. Jiao et al. 

(2018) proposed a densely connected end-to-end neural 

network for multiscale and multiscene SAR ship detection, 

demonstrating the capabilities of deep learning in handling 

complex SAR data for maritime surveillance [17]. Their 

approach utilized dense connections to capture multiscale 

features and achieved robust ship detection performance across 

various scenarios. 

Overall, the literature survey highlights the evolution of ship 

detection methodologies from conventional remote sensing 

techniques to advanced deep learning approaches. While 

traditional methods continue to play a significant role in 

maritime surveillance, the integration of deep learning 

techniques offers new possibilities for enhancing detection 

accuracy, efficiency, and real-time capability. Future research 

directions may focus on further refining deep learning models, 

optimizing data processing pipelines, and integrating multi-

sensor data for comprehensive maritime monitoring solutions. 

3. METHODOLOGY 

a) Proposed Work: 

The proposed work aims to address limitations in existing ship 

monitoring techniques by introducing an advanced system 

based on Faster R-CNN trained on Airborne Compressed Radar 

Data. By utilizing radar signals from airborne flight radar, the 

system eliminates the dependency on AIS installations on ships, 

enhancing detectability. Leveraging both Time Domain and 

Doppler domain data, Faster R-CNN efficiently detects and 

classifies objects, ensuring comprehensive maritime safety and 
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surveillance. Furthermore, employing ResNet50 as the base 

model enhances the system's effectiveness. 

We further experiment, using a VGG16-based Faster R-CNN 

model will be implemented to further improve performance 

through transfer learning and fine-tuning. A systematic 

comparison with the original ResNet50-based model will 

provide insights into the effectiveness of different architectures. 

Additionally, a user-friendly Flask framework with SQLite 

support will be developed to streamline user interaction, 

including signup, signin, and seamless interaction with the ship 

detection models. This VGG16 and framework aim to enhance 

system usability and performance, offering a robust solution for 

maritime safety and surveillance in diverse scenarios. 

 

b) System Architecture: 

 

Fig 1 Proposed Architecture 

The system architecture begins with the input of Airborne 

Compressed Radar Data, encompassing signals in both Time 

Domain and Doppler domain. The models are trained on this 

diverse data, utilizing Time signals for object detection and 

Doppler signals for object classification. Subsequently, a 

structured data preprocessing phase entails signal-to-image 

conversion, shuffling, and normalization. The processed data 

undergoes a train-test split, leading to the creation of two ship 

detection models: the base Faster R-CNN model based on 

ResNet50 and the extended Faster R-CNN model based on 

VGG16. Performance evaluation metrics, including accuracy, 

precision, recall, and F1 score, ensure a comprehensive 

assessment of the models, culminating in an effective and 

accurate ship detection system. 

c) Dataset: 

The dataset used for this exploration comprises airborne 

compressed radar data collected from various flight radar 

signals. These signals were obtained using airborne radar 

systems such as F-SAR and DBFSAR, ensuring diverse 

coverage and data characteristics. The dataset encompasses a 

range of maritime scenarios, including different environmental 

conditions and ship types, to provide a comprehensive 

representation of real-world maritime surveillance scenarios. 

Each signal in the dataset is annotated with corresponding ship 

presence or absence labels, facilitating supervised learning 

tasks. Additionally, metadata such as signal frequency, 

acquisition time, and geographical location are provided to 

enrich the dataset and enable further analysis. This dataset 

collection process ensures the availability of high-quality, 

diverse radar data suitable for exploring ship detection 

methodologies and enhancing maritime safety and security 

measures. 

d) Data Processing: 

For dataset preprocessing, the following steps will be 

performed: 

Normalizing Images: Normalization involves scaling the pixel 

values of the images to a standard range, typically between 0 

and 1. This ensures that the neural network converges faster 

during training and is less sensitive to variations in pixel 

intensity.  

Shuffling Images: Shuffling the dataset ensures that the order of 

images does not influence the learning process of the neural 

network. This helps prevent any biases that may arise if the 

dataset has a specific order, such as images of the same class 

being grouped together. The dataset will be randomly shuffled 

before training to ensure that the model learns to generalize well 

to unseen data. 

These preprocessing steps will be applied to each image in the 

dataset before feeding them into the neural network for training. 

Feature Extraction 

Feature extraction is a crucial step in processing radar data for 

ship detection. It involves capturing relevant information from 

raw data to facilitate accurate identification of ships amidst 

various maritime elements. In the context of ship detection 

using Range-Compressed (RC) radar data, feature extraction 

aims to highlight distinguishing characteristics of ships, such as 

their size, shape, and motion patterns, while minimizing 

interference from background clutter and noise. Techniques like 

convolutional neural networks (CNNs) are commonly 

employed for feature extraction, leveraging their ability to 

automatically learn and extract meaningful features from input 

data. By extracting discriminative features from RC radar data, 

such as temporal and spatial signatures, feature extraction 

enables the subsequent stages of ship detection algorithms to 

effectively differentiate ships from other objects and 

background clutter, ultimately enhancing maritime situational 

awareness and security. 

e) Training and Testing: 

Data splitting is a fundamental step in machine learning model 

development, crucial for evaluating model performance and 

generalization ability. In the context of ship detection using 

Range-Compressed (RC) radar data, the dataset is typically 

divided into training and testing subsets. The training set, 
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comprising a majority of the data, is used to train the model, 

allowing it to learn patterns and relationships between input 

features and corresponding ship labels. The testing set, kept 

separate from the training data, serves to assess the model's 

performance on unseen data, providing an estimate of its ability 

to generalize to new observations. Careful data splitting is 

essential to ensure that the training and testing sets are 

representative of the overall dataset, preventing biases and 

yielding reliable performance metrics. Techniques such as 

random sampling or stratified sampling can be employed to 

create balanced partitions that adequately capture the variability 

present in the RC radar data. 

f) Algorithms: 

The Faster R-CNN model based on ResNet50 and VGG16 

follow a two-stage object detection framework. 

Faster R-CNN with ResNet50: This variant employs 

ResNet50 as its backbone model. In the initial stage, it utilizes 

a Region Proposal Network (RPN) to generate potential 

bounding box proposals within the input image. These 

proposals are then refined in the second stage through 

classification and bounding box adjustment. ResNet50, known 

for its deep convolutional architecture, serves as an effective 

feature extractor, capturing intricate details essential for 

accurate object detection. 

 

Fig 2 Faster R-CNN with ResNet50 

VGG16: Utilizes VGG16 as its base model, maintaining the 

same two-stage approach as the ResNet50 variant. VGG16, 

characterized by its simplicity and depth, comprises a series of 

convolutional and max-pooling layers. Despite its simpler 

architecture compared to ResNet50, VGG16 excels in feature 

extraction, making it suitable for object detection tasks. This 

aims to explore different architectures to potentially improve 

ship detection accuracy, leveraging the strengths of VGG16's 

feature extraction capabilities within the Faster R-CNN 

framework. 

 

Fig 3 VGG16 

Overall, both variants of Faster R-CNN - ResNet50 and 

VGG16-based - capitalize on the region-based detection 

algorithm to accurately identify objects within specific regions, 

thereby reducing false detections. These models offer robust 

solutions for ship detection in radar data, with ResNet50 

providing deep feature extraction and VGG16 offering 

simplicity and effectiveness in feature representation. 

4. EXPERIMENTAL RESULTS 

Accuracy: The accuracy of a test is its ability to differentiate 

the patient and healthy cases correctly. To estimate the accuracy 

of a test, we should calculate the proportion of true positive and 

true negative in all evaluated cases. Mathematically, this can be 

stated as: 

 Accuracy = TP + TN TP + TN + FP + FN. 

 

F1-Score: F1 score is a machine learning evaluation metric that 

measures a model's accuracy. It combines the precision and 

recall scores of a model. The accuracy metric computes how 

many times a model made a correct prediction across the entire 

dataset. 

Precision: Precision evaluates the fraction of correctly 

classified instances or samples among the ones classified as 
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positives. Thus, the formula to calculate the precision is given 

by: 

Precision = True positives/ (True positives + False positives) = 

TP/(TP + FP) 

 

Recall: Recall is a metric in machine learning that measures the 

ability of a model to identify all relevant instances of a 

particular class. It is the ratio of correctly predicted positive 

observations to the total actual positives, providing insights into 

a model's completeness in capturing instances of a given class. 

 

 

Fig 4 Comparison Graphs 

 

Fig 5 Performance Evaluation Table 

 

Fig 6 Home Page 

 

Fig 7 Registration Page 

 

Fig 8 Login Page 

 

Fig 9 Upload Input Image 

 

Fig 10 Final Outcome 
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5. CONCLUSION 

In conclusion, the project successfully addressed the imperative 

need for enhanced maritime surveillance through ship detection 

methodologies. The ResNet50-FRCNN model laid a solid 

foundation, demonstrating commendable performance in initial 

tests. However, the VGG16-FRCNN model exceeded 

expectations by achieving 100% accuracy, showcasing its 

superiority in ship detection tasks. This remarkable 

performance underscores the efficacy of exploring different 

architectures for advancing detection capabilities. 

The integration of the Flask framework further streamlined user 

interactions, simplifying the testing and evaluation process. 

Users could seamlessly upload airborne ship images and obtain 

accurate detections, enhancing usability and accessibility. 

Beyond technical advancements, the project's outcomes hold 

significant implications for various stakeholders. Investors, 

traders, and businesses stand to benefit from robust predictive 

models and a user-friendly interface, which provide valuable 

insights and reduce investment risks in maritime activities. 

Overall, the proposed ResNet50-FRCNN model and the 

superior VGG16-FRCNN model, along with the Flask 

framework, contribute substantially to enhanced maritime 

safety and security. These models offer accurate and efficient 

ship detection capabilities, empowering stakeholders with 

actionable intelligence for informed decision-making in 

maritime operations. Moving forward, continued research and 

development in this domain promise even greater strides in 

maritime surveillance and risk management. 

 

6. FUTURE SCOPE 

Future work entails fine-tuning Faster R-CNN-based ship 

detection algorithms for increased accuracy and reduced false 

positives, bolstering reliability. Robustness testing across 

diverse geographic regions and environmental conditions is 

crucial to ensure system effectiveness. Additionally, exploring 

alternative deep learning frameworks will facilitate 

comprehensive evaluation and selection of the most suitable 

technique. Expanding the system's scope to detect and monitor 

various maritime objects and activities, such as illegal fishing 

and piracy, will further augment maritime safety and security 

measures. 
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